%0 Thesis %A Bacelo Polo, Adrián %T Los grupos de género imaginario menor que 10 %D 2013 %U https://hdl.handle.net/20.500.14352/36380 %X Sea X una superficie de Klein, no orientable, sin borde, de género topológico g > 2. Entonces su grupo de automorfismos tiene, como máximo, orden 84(g-2). Por otro lado, todo grupo finito es grupo de automorfismos de alguna superficie de Klein, no orientable, sin borde. Dado un grupo finito G, denominaremos género imaginario de G al menor de los géneros topológicos de las superficies de Klein, no orientables, sin borde, de las que es grupo de automorfismos. El conocimiento de este parámetro es escaso, menor que el del correspondiente para las superficies de Riemann (género simétrico) y para las superficies de Klein con borde (género real).Uno de los problemas pendientes de resolver para el género imaginario es cuáles son los grupos con un género imaginario g dado, lógicamente para g pequeño. Los grupos de género imaginario 1 son los cíclicos y diedrales, y los de género imaginario 2, los productos de estos por C2. No existe ningún grupo de género imaginario 3, esto es, los grupos que actúan sobre superficies de género 3 también lo hacen sobre superficies de género 1 ó 2.Los grupos de género imaginario 4 y 5 han sido obtenidos recientemente por E.Bujalance, J.J. Etayo y E. Martínez, y son dos grupos de género imaginario 4, y ocho grupos de género imaginario 5.El objetivo del trabajo es completar la determinación de todos los grupos de género imaginario menor que 10, obteniendo por lo tanto los que corresponden a los valores de g con 6 ≤ g ≤ 9. %~