%0 Thesis %A Sanz Sanz, Pablo %A Villanueva Quirós, Juan Carlos %T Deep learning applied to turn-based board games %D 2021 %U https://hdl.handle.net/20.500.14352/10422 %X Due to the astonishing growth rate in computational power, artificial intelligence is achieving milestones that were considered as inconceivable just a few decades ago. One of them is AlphaZero, an algorithm capable of reaching superhuman performance in chess, shogi and Go, with just a few hours of self-play and given no domain knowledge except the game rules.In this paper, we review the fundamentals, explain how the algorithm works, and develop our own version of it, capable of being executed on a personal computer. Despite the lack of available computational resources, we have managed to master less complex games such as Tic-Tac-Toe and Connect 4. To verify learning, we test our implementation against other strategies and analyze the results obtained. %X Gracias al ritmo vertiginoso al que crece la capacidad computacional, la inteligencia artificial está ́logrando hitos que hace tan solo unas décadas se consideraban impensables. Uno de ellos es AlphaZero, un algoritmo capaz de alcanzar un nivel de juego sobrehumano en ajedrez, shogi y Go, mediante unas pocas horas de autoaprendizaje y sin conocimiento del dominio excepto las reglas del juego. En este trabajo, revisamos los fundamentos, explicamos cómo funciona el algoritmo y desarrollamos nuestra propia versión de este, capaz de ser ejecutada en un ordenador personal. A pesar de la escasez de recursos computacionales disponibles, hemos conseguido dominar juegos menos complejos como el Tres en Raya y el Conecta 4. Para verificar el aprendizaje, probamos nuestra implementación contra otras estrategias y analizamos los resultados obtenidos. %~