RT Journal Article T1 A convergent numerical scheme for integrodifferential kinetic models of angiogenesis A1 Bonilla, Luis L. A1 Carpio Rodríguez, Ana María A1 Carretero Zamora, Juan Manuel A1 Duro, Gema A1 Negreanu Pruna, Mihaela A1 Terragni, Filippo AB We study a robust finite difference scheme for integrodifferential kinetic systems of Fokker-Planck type modeling tumor driven blood vessel growth. The scheme is of order one and enjoys positivity features. We analyze stability and convergence properties, and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the solution of the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. A numerical study clarifies the influence of velocity cut-offs on the solutions for exponentially decaying data. PB Elsevier SN 0021-9991 YR 2018 FD 2018-12-15 LK https://hdl.handle.net/20.500.14352/13407 UL https://hdl.handle.net/20.500.14352/13407 LA eng NO Bonilla, L., Carpio Rodríguez, A. M., Carretero Zamora, J. M. et al. «A Convergent Numerical Scheme for Integrodifferential Kinetic Models of Angiogenesis». Journal of Computational Physics, vol. 375, diciembre de 2018, pp. 1270-94. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2018.09.008. NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 6 abr 2025