TY - JOUR AU - Villarrubia Elvira, Jorge AU - Costero Valero, Luis María AU - Igual Peña, Francisco Daniel AU - Olcoz Herrero, Katzalin PY - 2026 DO - 10.1016/j.future.2025.108145 SN - 0167-739X UR - https://hdl.handle.net/20.500.14352/126143 T2 - Future Generation Computer Systems AB - Recent advances in dynamic GPU partitioning, such as NVIDIA's Multi-Instance GPU (MIG) technology, have enhanced resource utilization by enabling task co-execution without contention. However, existing MIG schedulers remain limited to static or... LA - eng M2 - 108145-1 PB - Elsevier KW - Multi-Instance GPU (MIG) KW - Moldable resource management KW - Deep reinforcement learning KW - Task scheduling TI - Solving the task scheduling and GPU reconfiguration problem on MIG devices via deep reinforcement learning TY - journal article VL - 176 ER -