RT Journal Article T1 Sub-kiloparsec alma imaging of compact star-forming galaxies at z ~ 2.5: revealing the formation of dense galactic cores in the progenitors of compact quiescent galaxies A1 Pérez González, Pablo Guillermo A1 otros, ... AB We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ~ 2.5. These galaxies are selected for their small rest-frame optical sizes (r_e,F160W ~ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ~ 2. The deep observations yield high far-infrared (FIR) luminosities of L_IR = 10^12.3-12.8 L_⨀ and star formation rates (SFRs) of SFR = 200–700 M_⊙ yr^−1, consistent with those of typical star-forming "main sequence" galaxies. The high spatial resolution (FWHM ~ 0 12–0 18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ~ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile (r_e,SFR ~ 1 kpc) is ~30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4×increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies. PB IOP Publishing SN 2041-8205 YR 2016 FD 2016-08-20 LK https://hdl.handle.net/20.500.14352/19010 UL https://hdl.handle.net/20.500.14352/19010 LA eng NO © 2016. The American Astronomical Society. All rights reserved. Artículo firmado por 13 autores. G.B. and M.K. acknowledge support from HST-AR-12847 and the Hellman Fellows Fund. P.G.P.-G. acknowledges support from grant AYA2015-70815-ERC. W.R. is supported by a CUniverse Grant (CUAASC) from Chulalongkorn University. This paper makes use of the following ALMA data: ADS/JAO. ALMA#2013.1.00576. S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NO Ministerio de Ciencia e Innovación (MICINN) NO Hellman Fellows Fund NO Chulalongkorn University - CUniverse Grant (CUAASC) NO Hubble Space Telescope NO European Research Council DS Docta Complutense RD 12 abr 2025