RT Journal Article T1 Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket T2 Indice de irregularidad y densidades esféricas de la penta alfombra de Sierpinski A1 Mera Rivas, María Eugenia A1 Morán Cabré, Manuel AB We compute the centred Hausdorff measure, Cs(P) ∼ 2.44, and the packing measure, Ps(P) ∼ 6.77, of the penta-Sierpinski gasket, P, with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in P, which, in contrast with that of the Sierpinski gasket, consists of a unique interval. These results allow us to compute the irregularity index of P, I(P) ∼ 0.6398, which we define for any self-similar set E with open set condition as I(E) = 1 − (Cs(E)/Ps(E)) . PB Springer Nature SN 1660-5446 YR 2023 FD 2023 LK https://hdl.handle.net/20.500.14352/95294 UL https://hdl.handle.net/20.500.14352/95294 LA eng NO Mera, M.E., Morán, M. Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket. Mediterr. J. Math. 20, 322 (2023). https://doi.org/10.1007/s00009-023-02528-6 NO Universidad Complutense de Madrid NO Banco Santander DS Docta Complutense RD 6 abr 2025