RT Journal Article T1 Ensemble equivalence in spin systems with short-range interactions A1 Takahashi, Kazutaka A1 Nishimori, Hidetoshi A1 Martín Mayor, Víctor AB We study the problem of ensemble equivalence in spin systems with short-range interactions under the existence of a first-order phase transition. The spherical model with nonlinear nearest-neighbour interactions is solved exactly both for canonical and microcanonical ensembles. The result reveals apparent ensemble inequivalence at the first-order transition point in the sense that the microcanonical entropy is non-concave as a function of the energy and consequently the specific heat is negative. In order to resolve the paradox, we show that an unconventional saddle point should be chosen in the microcanonical calculation that represents a phase separation. The XY model with non-linear interactions is also studied by microcanonical Monte Carlo simulations in two dimensions to see how this model behaves in comparison with the spherical model. PB IOP Publishing SN 1742-5468 YR 2011 FD 2011-08-30 LK https://hdl.handle.net/20.500.14352/42758 UL https://hdl.handle.net/20.500.14352/42758 LA eng NO © 2011 IOP Publishing Ltd and SISSA. DS Docta Complutense RD 7 abr 2025