RT Journal Article T1 Alternating groups as automorphism groups of Riemann surfaces A1 Etayo Gordejuela, José Javier A1 Martínez García, Ernesto AB In this work we give pairs of generators (x, y) for the alternating groups An, 5 ≤ n ≤ 19, such that they determine the minimal genus of a Riemann surface on which An acts as the automorphism group. Using these results we prove that A15 is the unique of these groups that is an H*-group, i.e., the groups achieving the upper bound of the order of an automorphism group acting on non-orientable unbordered surfaces. PB World Scientific SN 0218-1967 YR 2006 FD 2006 LK https://hdl.handle.net/20.500.14352/50031 UL https://hdl.handle.net/20.500.14352/50031 NO Etayo Gordejuela, J. J., & Martínez García, E. «ALTERNATING GROUPS AS AUTOMORPHISM GROUPS OF RIEMANN SURFACES». International Journal of Algebra and Computation, vol. 16, n.o 01, febrero de 2006, pp. 91-98. DOI.org (Crossref), https://doi.org/10.1142/S0218196706002937. DS Docta Complutense RD 3 abr 2025