RT Journal Article T1 Structural and cathodoluminescence assessment of V_2O_5 nanowires and nanotips grown by thermal deposition A1 Díaz-Guerra Viejo, Carlos A1 Piqueras de Noriega, Javier AB V_2O_5 nanostructures have been grown on 4H-SiC and Si substrates by a thermal deposition method without a catalyst. High aspect ratio nanowires with rectangular cross sections were grown on 4H-SiC. High-resolution transmission electron microscopy observations and cathodoluminescence (CL) spectroscopy measurements reveal the high crystal quality of the grown nanowires. Deposition on Si substrates leads to the growth of V_2O_5 platelets or rod-shaped crystals ending in arrays of parallel sharp nanotips with apex radius in the 50 nm range. A CL emission band observed centered at about 1.70 eV in spectra from these nanostructures is tentatively attributed to defect centers involving oxygen vacancies. PB American Institute of Physics SN 0021-8979 YR 2007 FD 2007-10-15 LK https://hdl.handle.net/20.500.14352/51094 UL https://hdl.handle.net/20.500.14352/51094 LA eng NO 1.Y. Wang and G. Cao, Chem. Mater. 18, 2787 (2006).2. L. Biette, F. Carn, M. Maugey, M. F. Achard, J. Maquet, N. Steunou, J. Livage, H. Serier, and R. Backov, Adv. Mater. 17, 2970 (2005).3. C. Zhou, L. Mai, Y. Liu, Y. Qi, Y. Dai, and W. Chen, J. Phys. Chem. C 111, 8202 (2007).4. V. Petkov, P. Y. Zavalij, S. Lutta, M. S. Whittingham, V. Parvanov, and S. Shastri, Phys. Rev. B 69, 085410 (2004).5. J. F. Xu, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, and R. Nesper, Appl. Phys. Lett. 81, 1711 (2002).6. J. Muster, V. Krstic, S. Roth, M. Burghard, G. T. Kim, J. G. Park, and Y. W. Park, Adv. Mater. (Weinheim, Ger.) 12, 420 (2000).7. N. Pinna, U. Wild, J. Urban, and R. Schlögl, Adv. Mater. (Weinheim, Ger.)15, 329 _2003_.8. U. Schlecht, M. Knez, V. Duppel, L. Kienle, and M. Burghard, Appl. Phys. A: Mater. Sci. Process. 78, 527 (2004).9. K. Takahashi, Y. Wang, and G. Cao, Appl. Phys. Lett. 86, 053102 (2005).10. A. Talledo and C. G. Granqvist, J. Appl. Phys. 77, 4655 (1995).11. S. Nishio and M. Kakihana, Chem. Mater. 14, 3730 (2002).12. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003).13. D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 044316 (2005).14. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005).15. J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005).16. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005).17. D. A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006).18. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 18, 155203 (2007).19. D. S. Su, M. Wieske, E. Beckmann, A. Blume, G. Mestl, and R. Schlögl, Catal. Lett. 75, 81 (2001).20. V. Eyert and K. H. Höck, Phys. Rev. B 57, 12727 (1998).21. C. R. Aita, Y. L. Liu, M. L. Kao, and S. D. Hansen, J. Appl. Phys. 60, 749 (1986).22. C. V. Ramana, O. M. Hussain, S. Uthanna, and B. Srinivasulu Naidu, Opt. Mater. 10, 101 (1998).23. S. Atzkern, S. V. Borisenko, M. Knupfer, M. S. Golden, J. Fink, A. N. Yaresko, V. N. Antonov, M. Klemm, and S. Horn, Phys. Rev. B 61, 12792 (2000).24. W. Lambrecht, D. Djafari-Rouhani, and J. Vennik, J. Phys. C 19, 369 (1986).25. C. V. Ramana, O. M. Hussain, B. Srinivasulu, and P. J. Reddy, Thin Solid Films 305, 219 (1997).26. M. F. Al-Kuhaili, E. E. Khawaja, D. C. Ingram, and S. M. A. Durrani, Thin Solid Films 460, 30 (2004). NO © 2007 American Institute of Physics.This work has been supported by MEC through project MAT2006-01259. NO MEC DS Docta Complutense RD 9 may 2024