RT Journal Article T1 In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications A1 Bartolomé Vílchez, Javier A1 Hidalgo Alcalde, Pedro A1 Maestre Varea, David A1 Cremades Rodríguez, Ana Isabel A1 Piqueras De Noriega, Francisco Javier AB Electric field induced mechanical resonances of In2O3 microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152GPa are obtained. A quality factor of 1180-3780 is measured from the amplitude-frequency curves, revealing the suitability of In2O3 microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In2O3 and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods. PB American Institute of Physics SN 0003-6951 YR 2014 FD 2014-04-21 LK https://hdl.handle.net/20.500.14352/33678 UL https://hdl.handle.net/20.500.14352/33678 LA eng NO © 2014 AIP Publishing LLC.This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid. NO MINECO NO Universidad Complutense de Madrid DS Docta Complutense RD 17 abr 2025