RT Journal Article T1 Intrinsic sensitivity limits for multiparameter quantum metrology A1 Goldberg, Aaron Z. A1 Sánchez Soto, Luis Lorenzo A1 Ferretti, Hugo AB The quantum Cramer-Rao bound is a cornerstone of modern quantum metrology, as it provides the ultimate precision in parameter estimation. In the multiparameter scenario, this bound becomes a matrix inequality, which can be cast to a scalar form with a properly chosen weight matrix. Multiparameter estimation thus elicits trade-offs in the precision with which each parameter can be estimated. We show that, if the information is encoded in a unitary transformation, we can naturally choose the weight matrix as the metric tensor linked to the geometry of the underlying algebra Su(n), with applications in numerous fields. This ensures an intrinsic bound that is independent of the choice of parametrization. PB American Physical Society SN 0031-9007 YR 2021 FD 2021-09-07 LK https://hdl.handle.net/20.500.14352/4477 UL https://hdl.handle.net/20.500.14352/4477 LA eng NO ©2021 American Physical Society.We would like to thank Hubert de Guise and Pieter Kok for useful discussions. A. Z. G. acknowledges funding from NSERC, the Walter C. Sumner Foundation, and Cray Inc.L. L. S. S. acknowledges financial support from the European Union’s Horizon 2020 research and innovation program (Projects ApresSF and Stormytune) and the Spanish Ministerio de Ciencia e Innovación (Grant No. PGC2018- 099183-B-I00). H. F. acknowledges funding from NSERC and CIFAR. NO Unión Europea. H2020 NO Ministerio de Ciencia e Innovación (MICINN) DS Docta Complutense RD 8 abr 2025