RT Journal Article T1 Constraining the orientation of the spin axes of extrasolar minor bodies 1I/2017 U1 (‘Oumuamua) and 2I/Borisov A1 Fuente Marcos, Carlos de la A1 Fuente Marcos, Raúl de la AB Context. The orientation of the spin axis of a comet is defined by the values of its equatorial obliquity and its cometocentric longitude of the Sun at perihelion. These parameters can be computed from the components of the nongravitational force caused by outgassing if the cometary activity is well characterized. The trajectories of known interstellar bodies passing through the Solar System show nongravitational accelerations. Aims. The spin-axis orientation of 1I/2017 U1(‘Oumuamua) remains to be determined; for 2I/Borisov, the already released results are mutually exclusive. In both cases, the values of the components of the nongravitational force are relatively well constrained. Here, we investigate —within the framework of the forced precession model of a nonspherical cometary nucleus— the orientation of the spin axes of ‘Oumuamua and 2I/Borisov using public orbit determinations that consider outgassing. Methods. We applied a Monte Carlo simulation using the covariance matrix method together with Monte Carlo random search techniques to compute the distributions of equatorial obliquities and cometocentric longitudes of the Sun at perihelion of ‘Oumuamua and 2I/Borisov from the values of the nongravitational parameters. Results. We find that the equatorial obliquity of ‘Oumuamua could be about 93◦ , if it has a very prolate (fusiform) shape, or close to 16◦ , if it is very oblate (disk-like). Different orbit determinations of 2I/Borisov gave obliquity values of 59◦ and 90◦ . The distributions of cometocentric longitudes were in general multimodal. Conclusions. Our calculations suggest that the most probable spin-axis direction of ‘Oumuamua in equatorial coordinates is (280◦ , +46◦ ) if very prolate or (312◦ , −50◦ ) if very oblate. Our analysis favors a prolate shape. For the orbit determinations of 2I/Borisov used here, we find most probable poles pointing near (275◦ , +65◦ ) and (231◦ , +30◦ ), respectively. Although our analysis favors an oblate shape for 2I/Borisov, a prolate one cannot be ruled out. PB EDPsciences SN 2329-1273 YR 2020 FD 2020-11 LK https://hdl.handle.net/20.500.14352/7578 UL https://hdl.handle.net/20.500.14352/7578 LA eng NO A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., et al. 2011, Science, 332,1396Amarante, A. & Winter, O. C. 2020, MNRAS, 496, 4154Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558,A33Astropy Collaboration, Price-Whelan, A. M., Sipocz, B. M., et al. 2018, AJ, 156, ˝123Avdyushev, V. A. & Banshchikova, M. A. 2007, Solar System Research, 41, 413Belton, M. J. S., Hainaut, O. R., Meech, K. J., et al. 2018, ApJ, 856, L21Bodewits, D., Noonan, J. W., Feldman, P. D., et al. 2020, Nature Astronomy, 4,867Bolin, B. T., Weaver, H. A., Fernandez, Y. R., et al. 2018, ApJ, 852, L2Bolin, B. T. & Lisse, C. M. 2020, MNRAS, 497, 4031Bolin, B. T., Bodewits, D., Lisse, C. M., et al. 2020a, The Astronomer’s Telegram13613, 1Bolin, B. T., Lisse, C. M., Kasliwal, M. M., et al. 2020b, AJ, 160, 26Bordovitsyna, T., Avdyushev, V., & Chernitsov, A. 2001, Celestial Mechanicsand Dynamical Astronomy, 80, 227Box, G. E. P. & Muller, M. E. 1958, The Annals of Mathematical Statistics, 29,610Bruck Syal, M., Schultz, P. H., Sunshine, J. M., et al. 2013, Icarus, 222, 610Cordiner, M. A., Milam, S. N., Biver, N., et al. 2020, Nature Astronomy, 4, 861Cremonese, G., Fulle, M., Cambianica, P., et al. 2020, ApJ, 893, L12de la Fuente Marcos, C. & de la Fuente Marcos, R. 2015, MNRAS, 453, 1288de la Fuente Marcos, C. & de la Fuente Marcos, R. 2017a, Res. Notes Am. Astron. Soc., 1, 5de la Fuente Marcos, C. & de la Fuente Marcos, R. 2017b, Res. Notes Am. Astron. Soc., 1, 9de León, J., Licandro, J., Serra-Ricart, M., et al. 2019, Res. Notes Am. Astron. Soc., 3, 131de León, J., Licandro, J., de la Fuente Marcos, C., et al. 2020, MNRAS, 495,2053Drahus, M., Guzik, P., Waniak, W., et al. 2018, Nature Astronomy, 2, 407Drahus, M., Guzik, P., Udalski, A., et al. 2020, The Astronomer’s Telegram13549, 1Farnham, T. L., Wellnitz, D. D., Hampton, D. L., et al. 2007, Icarus, 187, 26Farnham, T. L., Bodewits, D., Li, J.-Y., et al. 2013, Icarus, 222, 540Fitzsimmons, A., Snodgrass, C., Rozitis, B., et al. 2018, Nature Astronomy, 2,133Fitzsimmons, A., Hainaut, O., Meech, K. J., et al. 2019, ApJ, 885, L9Flekkøy, E. G., Luu, J., & Toussaint, R. 2019, ApJ, 885, L41Fraser, W. C., Pravec, P., Fitzsimmons, A., et al. 2018, Nature Astronomy, 2, 383Freedman, D. & Diaconis, P. 1981, Probability Theory and Related Fields, 57,453Ginsburg, A., Sipocz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98 ˝Giorgini, J. D. 2015, IAUGA, 22, 2256293Gladman, B., Boley, A., & Balam, D. 2019, Res. Notes Am. Astron. Soc., 3, 187Guzik, P., Drahus, M., Rusek, K., et al. 2020, Nature Astronomy, 4, 53Hainaut, O. R., Meech, K. J., Micheli, M., et al. 2018, The Messenger, 173, 13Hoang, T. & Loeb, A. 2020, ApJ, 899, L23Hui, M.-T. & Knight, M. M. 2019, AJ, 158, 256Hui, M.-T., Ye, Q.-Z., Föhring, D., et al. 2020, AJ, 160, 92Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90Jewitt, D., Mutchler, M., Kim, Y., et al. 2020a, The Astronomer’s Telegram 13611, 1Jewitt, D., Hui, M.-T., Kim, Y., et al. 2020b, ApJ, 888, L23Jewitt, D., Kim, Y., Mutchler, M., et al. 2020c, ApJ, 896, L39Kareta, T., Andrews, J., Noonan, J. W., et al. 2020, ApJ, 889, L38Kidger, M. R., & Manteca, J. 2002, Earth Moon and Planets, 90, 153Kim, Y., Jewitt, D., Mutchler, M., et al. 2020, ApJ, 895, L34Knight, M. M., Protopapa, S., Kelley, M. S. P., et al. 2017, ApJ, 851, L31Knollenberg, J., Lin, Z. Y., Hviid, S. F., et al. 2016, A&A, 596, A89Krolikowska, M., Sitarski, G., & Szutowicz, S. 1998, A&A, 335, 757Lin, H. W., Lee, C.-H., Gerdes, D. W., et al. 2020, ApJ, 889, L30Manzini, F., Oldani, V., Ochner, P., et al. 2020, MNRAS, 495, L92Marsden, B. G., Sekanina, Z., & Yeomans, D. K. 1973, AJ, 78, 211Mashchenko, S. 2019, MNRAS, 489, 3003McKay, A. J., Cochran, A. L., Dello Russo, N., et al. 2020, ApJ, 889, L10Meech, K. J., Weryk, R., Micheli, M., et al. 2017, Nature, 552, 378Micheli, M., Farnocchia, D., Meech, K. J., et al. 2018, Nature, 559, 223Mommert, M., Kelley, M., de Val-Borro, M., et al. 2019, The Journal of Open Source Software, 4, 1426Opitom, C., Fitzsimmons, A., Jehin, E., et al. 2019, A&A, 631, L8’Oumuamua ISSI Team, Bannister, M. T., Bhandare, A., et al. 2019, Nature Astronomy, 3, 594Rafikov, R. R. 2018, ApJ, 867, L17Rinaldi, G., Formisano, M., Kappel, D., et al. 2019, A&A, 630, A21Rudenko, M. 2016, Asteroids: New Observations, New Models, Proceedings of the International Astronomical Union, IAU Symposium, Volume 318, pp. 265-269Samarasinha, N. H., Mueller, B. E. A., Belton, M. J. S., et al. 2004, Comets II(Cambridge, UK: Cambridge University Press), 281Scargle, J. D., Norris, J. P., Jackson, B., et al. 2013, ApJ, 764, 167Scott, D. W. 1992, Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons, New York, Chicester)Sekanina, Z. 1981, ARA&A, 9, 113Sekanina, Z. 1984, AJ, 89, 1573Sekanina, Z. 1997, A&A, 318, L5Sekanina, Z. 2019, arXiv e-prints, arXiv:1911.06271Seligman, D., Laughlin, G., & Batygin, K. 2019, ApJ, 876, L26Seligman, D. & Laughlin, G. 2020, ApJ, 896, L8Sitarski, G. 1990, Acta Astron., 40, 405Sitarski, G. 1996, Acta Astron., 46, 29Trilling, D. E., Mommert, M., Hora, J. L., et al. 2018, AJ, 156, 261Vazan, A. & Sari, R. 2020, MNRAS, 493, 1546Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261Whipple, F. L. 1950, ApJ, 111, 375Xing, Z., Bodewits, D., Noonan, J., et al. 2020, ApJ, 893, L48Yabushita, S. 1996, MNRAS, 283, 347Yang, B., Kelley, M. S. P., Meech, K. J., et al. 2020, A&A, 634, L6Ye, Q., Kelley, M. S. P., Bolin, B. T., et al. 2020, AJ, 159, 77Yeomans, D. K., Chodas, P. W., Sitarski, G., et al. 2004, Comets II (Cambridge,UK: Cambridge University Press), 137Zhang, Q., Ye, Q., & Kolokolova, L. 2020, The Astronomer’s Telegram 13618,1Zhang, Y. & Lin, D. N. C. 2020, Nature Astronomy, 4, 852Zhou, W. H. 2019, arXiv e-prints, arXiv:1911.12228v2Zhou, W. H. 2020, ApJ, 899, 42 NO Ministerio de Economía y Competitividad (MINECO) DS Docta Complutense RD 15 may 2024