%0 Journal Article %A Cabrales, Pablo %A Onecha, Víctor V. %A Izquierdo-García, David %A Fraile Prieto, Luis Mario %A Udías Moinelo, José Manuel %A López Herraiz, Joaquín %T PROTOTWIN-PET: A deep learning and GPU-based workflow for dose verification in proton therapy with PET %D 2025 %U https://hdl.handle.net/20.500.14352/122436 %X In proton therapy (PT), accurate dose delivery verification is critical for detecting treatment plan deviations. This can be achieved by imaging activated positron emitters with a positron emission tomography (PET) acquisition and converting the data into a delivered dose image. This work presents PROTOTWIN-PET (PROTOn therapy digital TWIN models for dose verification with PET), a patient-specific, deep learning (DL) and GPU-based workflow for 3-D dose verification. The proposed workflow generates a dataset of simulated, realistic 3-D PET and dose pairs that reflect possible clinical deviations in patient positioning and physical parameters. Using this dataset, a DL model is trained to estimate the delivered dose from the PET image, incorporating a deviation-predicting branch (DPB) to estimate patient positioning deviations. PROTOTWIN-PET is demonstrated on a two-field oropharyngeal cancer treatment plan, estimating the delivered dose in milliseconds with an average mean relative error of 0.6% and near-perfect gamma passing rates (3 mm, 3%). Positioning deviations are estimated on average within a tenth of a millimeter and degree. PROTOTWIN-PET can be implemented within the one-day interval between the plan CT acquisition and the first treatment session, potentially enabling timely treatment plan adjustments and maximizing the precision of PT. PROTOTWIN-PET is available at github.com/pcabrales/prototwin-pet.git. %~