RT Journal Article T1 Sub-bandgap spectral photo-response analysis of Ti supersaturated Si A1 Mártil de la Plaza, Ignacio A1 García Hemme, Eric A1 García Hernansanz, Rodrigo A1 González Díaz, Germán A1 Olea Ariza, Javier A1 Prado Millán, Álvaro del AB We have analyzed the increase of the sheet conductance (Delta G(square)) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high Delta G(square), even higher than that measured in a silicon reference sample. This increase in the Delta G(square) magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition. PB Amer Inst Physics SN 0003-6951 YR 2012 FD 2012-11-05 LK https://hdl.handle.net/20.500.14352/44230 UL https://hdl.handle.net/20.500.14352/44230 LA eng NO 1) A. Rogalski, Prog. Quantum Electron. 27, 59–210 (2003).2) D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer, 2004), Vol. 94, pp. 1–50.3) A. J. Said, D. Recht, J. T. Sullivan, J. M. Warrender, T. Buonassisi, P. D. Persans, and M. J. Aziz, Appl. Phys. Lett. 99, 073503 (2011).4) M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, Appl. Phys. A: Mater. Sci. Process. 98, 589–594 (2010).5) J. Olea, Á. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011).6) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014–5017(1997).7) A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146–152 (2012).8) N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012).9) J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Raichoudhury, J. R. McCormick, and H. C. Mollenkopf, IEEE Trans. Electron Devices 27(4), 677–687 (1980).10) N. F. Mott, Adv. Phys. 21(94), 785–823 (1972).11) A. Luque, A. Martí, E. Antolín, and C. Tablero, Phys. B: Condens. Matter 382(1–2), 320–327 (2006).12) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnon, Phys. Rev. B 79, 165203 (2009).13) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010).14) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011).15) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009).16) D. B. Williams and B. C. Carter, Transmission Electron Microscopy: Difraction (Plenum, New York, USA, 1996).17) L. J. van der Pauw, Philips Tech. Rev. 20, 220–224 (1958).18) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115(2009).19) R. A. Sintón and A. Cuevas, Appl. Phys. Lett. 69, 2510-2512 (1996). NO © 2012 American Institute of Physics. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations and the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. García-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thanks Professor A. Martí and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken. NO Comunidad de Madrid NO MICINN DS Docta Complutense RD 6 may 2024