RT Journal Article T1 Mini-moons from horseshoes: A physical characterization of 2022 NX1 with OSIRIS at the 10.4 m Gran Telescopio Canarias A1 Fuente Marcos, Raúl de la A1 Leon, J. de A1 Fuente Marcos, Carlos de la A1 Licandro Goldaracena, Javier A1 Serra-Ricart, M. A1 Cabrera-Lavers, A. AB Context. The near-Earth orbital space is shared by natural objects and space debris that can be temporarily captured in geocentric orbits. Short-term natural satellites are often called mini-moons. Reflectance spectroscopy can determine the true nature of transient satellites because the spectral signatures of spacecraft materials and near-Earth asteroids (NEAs) are different. The recently discovered object 2022 NX1 follows an Earth-like orbit that turns it into a recurrent but ephemeral Earth companion. It has been suggested that 2022 NX1 could have an artificial origin or be lunar ejecta.Aims. Here, we use reflectance spectroscopy and N-body simulations to determine the nature and actual origin of 2022 NX1.Methods. We carried out an observational study of 2022 NX1, using the OSIRIS camera spectrograph at the 10.4 m Gran Telescopio Canarias, to derive its spectral class. N-body simulations were also performed to investigate how it reached NEA space.Results. The reflectance spectrum of 2022 NX1 is neither compatible with an artificial origin nor lunar ejecta; it is also different from the V type of the only other mini-moon with available spectroscopy, 2020 CD3. The visible spectrum of 2022 NX1 is consistent with that of a K-type asteroid, although it could also be classified as an Xk type. Considering typical values of the similar albedo of both K-type and Xk-type asteroids and its absolute magnitude, 2022 NX1 may have a size range of 5 to 15 m. We confirm that 2022 NX1 inhabits the rim of Earth’s co-orbital space, the 1:1 mean-motion resonance, and experiences recurrent co-orbital engagements of the horseshoe-type and mini-moon events.Conclusions. The discovery of 2022 NX1 confirms that mini-moons can be larger than a few meters and also that they belong to a heterogeneous population in terms of surface composition. PB EDP Sciences SN 0004-6361 YR 2023 FD 2023-02-02 LK https://hdl.handle.net/20.500.14352/72888 UL https://hdl.handle.net/20.500.14352/72888 LA eng NO Aarseth, S. J. 2003, Gravitational N-Body Simulations (Cambridge: Cambridge University Press), 27Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, 123Bacci, P., Maestripieri, M., Grazia, M. D. 2022, Minor Planet Electronic Circulars, 2022-O04Binzel, R. P., Perozzi, E., Rivkin, A. S., et al. 2004, Meteorit. Planet. Sci., 39, 351Bolin, B., Jedicke, R., Granvik, M., et al. 2014, Icarus, 241, 280Bolin, B. T., Fremling, C., Holt, T. R., et al. 2020, ApJ, 900, L45Buzzoni, A., Altavilla, G., Fan, S., et al. 2019, Advances in Space Research, 63, 371Cano, J. L., Ceccaroni, M., Faggioli, L., et al. 2019, ESA’s Activities on the Boundaries between NEO and Debris Detection, in 1st NEO and Debris Detection Conference, ed. T. Flohrer, R. Jehn, & F. Schmitz (ESA Space Safety Programme Office Publishing), 470Carusi, A. & Valsecchi, G. B. 1979, Riunione della Societa Astronomica Italiana, 22, 181Cepa, J., Aguiar, M., Escalera, V. G., et al. 2000, Proc. SPIE, 4008, 623Cepa, J. 2010, Astrophysics and Space Science Proceedings, 14, 15Cheng, A. F., Michel, P., Jutzi, M., et al. 2016, Planet. Space Sci., 121, 27Cowardin, H. M., Hostetler, J. M., Murray, J. I., et al. 2021, Journal of the Astronautical Sciences, 68, 1186de la Fuente Marcos, C. & de la Fuente Marcos, R. 2012, MNRAS, 427, 728de la Fuente Marcos, C. & de la Fuente Marcos, R. 2016, MNRAS, 462, 3441de la Fuente Marcos, C. & de la Fuente Marcos, R. 2018a, MNRAS, 473, 2939de la Fuente Marcos, C. & de la Fuente Marcos, R. 2018b, MNRAS, 473, 3434de la Fuente Marcos, C. & de la Fuente Marcos, R. 2020, MNRAS, 494, 1089de la Fuente Marcos, C. & de la Fuente Marcos, R. 2022, Research Notes of the American Astronomical Society, 6, 160de León, J., Licandro, J., Serra-Ricart, M., et al. 2010, A&A, 517, A23DeMeo, F., Binzel, R. P., Slivan, S. M., et al. 2009, Icarus, 202, 160Fedorets, G., Granvik, M., & Jedicke, R. 2017, Icarus, 285, 83Fedorets, G., Micheli, M., Jedicke, R., et al. 2020, AJ, 160, 277Ginsburg, A., Sip˝ocz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98Giorgini, J. 2011, in Journées Systèmes de Référence Spatio-temporels 2010, ed. N. Capitaine, 87–87Giorgini, J. D. 2015, IAUGA, 22, 2256293Granvik, M., Vaubaillon, J., & Jedicke, R. 2012, Icarus, 218, 262Greenstreet, S., Ngo, H., & Gladman, B., 2012, Icarus, 217, 355Jorgensen, K. M. 2000, Ph.D. Thesis, University of Colorado, BoulderJorgensen, K., Rivkin, A., Binzel, R., et al. 2003, American Astronomical Society, DPS meeting #35, id.36.02Jorgensen, K., Africano, J., Hamada, K., et al. 2004, Advances in Space Research, 34, 1021Kwiatkowski, T., Kryszczynska, A., Polinska, M., et al. 2009, A&A, 495, 967Lecar, M., Franklin, F., & Murison, M. 1992, AJ, 104, 1230Licandro, J., de la Fuente Marcos, C., de la Fuente Marcos, R., et al. 2019, A&A, 625, A133Mainzer, A., Grav, T., Masiero, J., et al. 2011, ApJ, 741, 90Makino, J. 1991, ApJ, 369, 200McDowell, J. C., 2020, General Catalog of Artificial Space Objects, Release 1.2.12 , https://planet4589.org/space/gcatMicheli, M., Buzzoni, A., Koschny, D., et al. 2018, Icarus, 304, 4Morais, M. H. M. & Morbidelli, A. 2002, Icarus, 160, 1Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge: Cambridge University Press)Park, R. S., Folkner, W. M., Williams, J. G., et al. 2021, AJ, 161, 105Popescu, M., Birlan, M., & Nedelcu, D. A. 2012, A&A, 544, A130Popescu, M., Vaduvescu, O., de León, J., et al. 2019, A&A, 627, A124Reddy, V., Kelley, M. S., Dotson, J., et al. 2022, PSJ, 3, 123Roa, J., Farnocchia, D., & Chesley, S. R. 2021, AJ, 162, 277Schildknecht, T. 2007, A&A Rev., 14, 41Sharkey, B. N. L., Reddy, V., Malhotra, R., et al. 2021, Communications Earth and Environment, 2, 231Tancredi, G. 1997, Celestial Mechanics and Dynamical Astronomy, 69, 119Valsecchi, G. B., Milani, A., Gronchi, G. F., et al. 2003, A&A, 408, 1179Vananti, A., Schildknecht, T., & Krag, H. 2017, Advances in Space Research,59, 2488Watson, T. 2016, Nature, 19162 NO Reseñado en: Sacristán, Enrique. Una miniluna acompañará a la tierra durante las próximas décadas. Retrieved Feb 13, 2023, from https://www.agenciasinc.es/Noticias/Una-miniluna-acompanara-a-la-Tierra-durante-las-proximas-decadas NO Ministerio de Ciencia e Innovación (MICINN) NO Gobierno de Canarias DS Docta Complutense RD 30 abr 2024