RT Journal Article T1 Supported ultra-thin alumina membranes with graphene as efficient interference enhanced raman scattering platforms for sensing A1 Aguilar Pujol, Montserrat X. A1 Ramírez Jiménez, Rafael A1 Xifre Pérez, Elisabet A1 Cortijo Campos, Sandra A1 Bartolomé Vílchez, Javier A1 Marsal, Lluís F. A1 Andrés, Alicia de AB The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 +/- (5%), for membranes with similar to 100 nm pore depth, similar to 18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (similar to 400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements. PB MDPI SN 2079-4991 YR 2020 FD 2020-05 LK https://hdl.handle.net/20.500.14352/6393 UL https://hdl.handle.net/20.500.14352/6393 LA eng NO ©2020 MDPIThe research leading to these results has received funding from Ministerio de Ciencia, Innovacion y Universidades (RTI2018-096918-B-C41) and RTI2018-094040-B-I00) and by the Agency for Management of University and Research Grants (AGAUR) 2017-SGR-1527. S.C. acknowledges the grant BES-2016-076440 from MINECO. NO Miniterio de Ciencia e Innovación (MICINN) NO Ministerio de Economía y Competitividad (MINECO) NO Generalitat de Catalunya DS Docta Complutense RD 12 abr 2025