RT Journal Article T1 Wave solutions for a discrete reaction-diffusion equation A1 Carpio Rodríguez, Ana María A1 Chapman, S. J. A1 Hastings, S. A1 Mcleod, J. B. AB Motivated by models from fracture mechanics and from biology, we study the infinite system of differential equations u'(n) = u(n-1) - 2u(n) + u(n+1) - A sin u(n) + F, ' = d/dt, where A and F are positive parameters. For fixed A > 0 we show that there are monotone travelling waves for F in an interval F-crit < F < A, and we are able to give a rigorous upper bound for F-crit, in contrast to previous work on similar problems. We raise the problem of characterizing those nonlinearities (apparently the more common) for which F-crit > 0. We show that, for the sine nonlinearity, this is true if A > 2. (Our method yields better estimates than this, but does not include all A > 0.) We also consider the existence and multiplicity of time independent solutions when \F\ < F-crit. PB Cambridge University Press SN 0956-7925 YR 2000 FD 2000 LK https://hdl.handle.net/20.500.14352/57218 UL https://hdl.handle.net/20.500.14352/57218 LA eng NO Carpio Rodríguez, A. M., Chapman, S. J., Hastings, S. & Mcleod, J. B. «Wave Solutions for a Discrete Reaction-Diffusion Equation». European Journal of Applied Mathematics, vol. 11, n.o 4, septiembre de 2000, pp. 399-412. DOI.org (Crossref), https://doi.org/10.1017/S0956792599004222. DS Docta Complutense RD 12 abr 2025