RT Journal Article T1 The least doubling constant of a path graph A1 Durand Cartagena, Estibalitz A1 Soria de Diego, Francisco Javier A1 Tradacete Pérez, Pedro AB We study the least doubling constant CG among all possible doubling measures defined on a path graph G. We consider both finite and infinite cases and show that, if G = Z, CZ = 3, while for G = Ln, the path graph with n vertices, one has 1 + 2 cos( π / n+1 ) ≤ CLn < 3, with equality on the lower bound if and only if n ≤ 8. Moreover, we analyze the structure of doubling minimizers on Ln and Z, those measures whose doubling constant is the smallest possible. PB Duke University Press YR 2025 FD 2025 LK https://hdl.handle.net/20.500.14352/117218 UL https://hdl.handle.net/20.500.14352/117218 LA eng NO Durand-Cartagena E, Soria J, Tradacete P. The least doubling constant of a path graph. Kyoto J Math 2025; 65. [DOI: 10.1215/21562261-2024-0014] NO Ministerio de Ciencia e Innovación (España) DS Docta Complutense RD 17 abr 2025