RT Book, Section T1 Coinductive Definition of Distances between Processes: Beyond Bisimulation Distances A1 Romero Hernandez, David A1 Frutos Escrig, David De A2 Ábrahám, Erika A2 Palamidesi, Catuscia AB Bisimulation captures in a coinductive way the quivalencebetween processes, or trees. Several authors have defined bisimulation distances based on the bisimulation game. However, this approach becomes too local: whenever we have in one of the compared processes a large collection of branches different from those of the other, only the farthest away is taken into account to define the distance. Alternatively, we have developed a more global approach to define these distances, based on the idea of how much we need to modify one of the compared processesto obtain the other. Our original definition only covered finite processes.Instead, now we present here a coinductive approach that extends our distance to infinite but finitary trees, without needing to consider any kind of approximation of infinite trees by their finite projections. PB Springer SN 978-3-662-43613-4 YR 2014 FD 2014 LK https://hdl.handle.net/20.500.14352/35711 UL https://hdl.handle.net/20.500.14352/35711 LA eng NO 34th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components and Systems (FORTE) NO Comunidad de Madrid DS Docta Complutense RD 21 sept 2025