%0 Journal Article %A López Duarte, Ismael %A Markéta Kubánková %A Darya Kiryushko %A Marina K. Kuimova %T Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates %D 2018 %@ 1744-683X %@ 1744-6848 %U https://hdl.handle.net/20.500.14352/115177 %X Amyloid deposits of aggregated beta-amyloid A(1-42) peptides are a pathological hallmark of Alzheimer's disease. A(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of A(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with A(1-42) oligomers, while fibrillar A(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by A(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease. %~