TY - JOUR AU - Legasa Ríos, Mikel Nestor AU - García Manzanas, Rodrigo AU - Calviño Martínez, Aída AU - Gutiérrez Llorente, José Manuel PY - 2022 DO - 10.1029/2021WR030272 SN - 0043-1397 UR - https://hdl.handle.net/20.500.14352/92170 T2 - Water Resources Research AB - This work presents a comprehensive assessment of the suitability of random forests, a well-known machine learning technique, for the statistical downscaling of precipitation. Building on the experimental and validation framework proposed in the... AB - Statistical downscaling methods aim to improve the limited spatial resolution of current climate models by linking a set of key large-scale predictor variables (e.g., geopotential, winds, etc.) to the predictand of interest (e.g., precipitation).... LA - eng M2 - 1 PB - Washington American Geophysical Union KW - Random forest KW - Stochastic precipitation KW - Rainfall KW - Predictive power TI - A posteriori random forests for stochastic downscaling of precipitation by predicting probability distributions TY - journal article VL - 58 ER -