RT Journal Article T1 An algorithm for robust linear estimation with grouped data A1 Rivero Rodríguez, Carlos A1 Valdés Sánchez, Teófilo AB An algorithm which is valid to estimate the parameters of linear models under several robust conditions is presented. With respect to the robust conditions, firstly, the dependent variables may be either non-grouped or grouped. Secondly, the distribution of the errors may vary within the wide class of the strongly unimodal distributions, either symmetrical or non-symmetrical. Finally, the variance of the errors is unknown. Under these circumstances the algorithm is not only capable of estimating the parameters (slopes and error variance) of the linear model, but also the asymptotic covariance matrix of the linear parameters. This opens the possibility of making inferences in terms of either multiple confidence regions or hypothesis testing PB Elsevier Science SN 0167-9473 YR 2008 FD 2008 LK https://hdl.handle.net/20.500.14352/50484 UL https://hdl.handle.net/20.500.14352/50484 LA eng NO MEC DS Docta Complutense RD 6 abr 2025