RT Report
T1 Large sample inference from G/G/1 retrial queues
A1 Rodrigo Fernández, Antonio
AB We consider a general G/G/1 retrial queue where retrials can be non Markovian. We obtain asymptotically Gaussian consistent estimators for an unknown k-dimensional parameter assuming that the distribution functions of the variables involved are known. We consider distinct levels of information which can be interpreted as different disciplines of service. We analyze the problem of impatient customers in a G/G/1 queue as a particular case. We also give some explicit estimators for Markovian queues.
PB Facultad de Ciencias Económicas y Empresariales. Decanato
SN 2255-5471
YR 1994
FD 1994
LK https://hdl.handle.net/20.500.14352/64105
UL https://hdl.handle.net/20.500.14352/64105
LA eng
NO I. V. Basawa and N. U. Prabhu. Estimation in single server queues, Naval Res. Logist. Quart., 28 (1981) 475-487.I. V. Basawa and N. U. Prabhu. Large sample inference from simple server queues, Queueing Systems, 1 (1988) 289-304.P. Billingsley. Statistical inference for Markov processes, The University of Chicago Press, Chicago (1961).G. I. Falin. A survey of retrial queues, Queueing Systems 7 (1990) 127-168.G. I. Falin and C. Fricker. On the virtual waiting time in an M/G/1 retrial queue, J. Appl. Probo 28 (1991) 446-460.G. I. Falin, A. Rodrigo and M. Vázquez. A new model for the M/G/1 retrial queue, Dept. de Análisis Económico. Technical Report #9411, Universidad complutense de Madrid, (1994).M. Martín and J. R. Artalejo. Analysis of an M/G/1 queue with two types of impatient units, Dept. Estadistica e I.O. Technical Report #94/1, Universidad Complutense de Madrid, (1994).R. E. Warfield and G. A. Foers Application of Bayesian methods to teletraffic measurement and dimensioning, Australian Telecommunications Research, 18, 2 (1984) 51-58.R. E. Warfield and G. A. Foers. Application of Bayesian teletraffic measurement to systems with queueing or repeated attempts, Eleventh International Teletraffic Congress, Kyoto, Japan (1985).
DS Docta Complutense
RD 25 abr 2024