RT Journal Article T1 Novel water-soluble mucoadhesive carbosilane dendrimersfor ocular administration A1 Bravo-Osuna, Irene A1 Vicario-de-la-Torre, Marta A1 Andrés-Guerrero, Vanessa A1 Sánchez-Nieves, Javier A1 Guzmán-Navarro, Manuel A1 de la Matad, F. Javier A1 Gómez, Rafael A1 de las Heras, Beatriz A1 Argüesoh, Pablo A1 Poncheli, Gilles A1 Herrero-Vanrell, Rocío A1 Molina-Martínez, Irene Teresa AB Purpose: To determine the potential use of water-soluble anionic and cationic carbosilane dendrimers (Generations 1-3) as mucoadhesive polymers in eyedrop formulations. Methods: Cationic carbosilane dendrimers decorated with ammonium –NH3 + groups were prepared by hydrosylilation of Boc-protected allylamine and followed by deprotection with HCl. Anionic carbosilane dendrimers with terminal carboxylate groups were also employed in this study. In vitro and in vivo tolerance studies were performed in human ocular epithelial cell lines and rabbit eyes respectively. The interaction of dendrimers with transmembrane ocular mucins was evaluated with a surface biosensor. As proof of concept, the hypotensive effect of a carbosilane dendrimer eyedrop formulation containing acetazolamide (ACZ), a poorly water-soluble drug with limited ocular penetration, was tested after instillation in normotensive rabbits. Results: The methodology used to synthesize cationic dendrimers avoids the difficulty of obtaining neutral –NH2 dendrimers that require harsher reaction conditions and also present high aggregation tendency. Tolerance studies demonstrated that both prototypes of water-soluble anionic and cationic carbosilane dendrimers were well tolerated in a range of concentrations between 5 and 10 μM. Permanent interactions between cationic carbosilane dendrimers and ocular mucins were observed using biosensor assays, predominantly for the generation-three (G3) dendrimer. An eyedrop formulation containing G3 cationic carbosilane dendrimers (5 μM) and ACZ (0.07%) (289.4 mOsm; 5.6 pH; 41.7 mN/m) induced a rapid (onset time 1 h) and extended (up to 7 h) hypotensive effect, and led to a significant increment in the efficacy determined by AUC0 8h and maximal intraocular pressure reduction. Conclusion: This work takes advantage of the high-affinity interaction between cationic carbosilane dendrimers and ocular transmembrane mucins, as well as the tensioactive behavior observed for these polymers. Our results indicate that low amounts of cationic carbosilane dendrimers are well tolerated and able to improve the hypotensive effect of an acetazolamide solution. Our results suggest that carbosilane dendrimers can be used in a safe range of concentrations to enhance the bioavailability of drugs topically administered in the eye. PB American Chemical Society (ACS) SN 1543-8384 YR 2016 FD 2016-09-06 LK https://hdl.handle.net/20.500.14352/18753 UL https://hdl.handle.net/20.500.14352/18753 LA eng NO (1) Abdelkader H.; Alany R.G.; Controlled and continuous release ocular drug delivery systems: pros andcons. Curr.Drug Del. 2012;9,421-430.(2) Urtti A.. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Del. Rev..2006;58,1131-1135.(3) Andres-Guerrero V.; Molina-Martinez I.T.; Peral A.; de las Heras B.; Pintor J.; Herrero-Vanrell R..The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analogue, 5-MCANAT,in rabbit eyes. Invest. Ophthalmol. Vis. Sci.. 2011;52, 1507-1515.(4) Vandamme T.F.; Brobeck L.. Poly(amidoamine) dendrimers as ophthalmic vehicles for oculardelivery of pilocarpine nitrate and tropicamide. J. Control. Release.2005;102, 23-38.(5) Yang H.; Tyagi P.; Kadam R.S.; Holden C.A.; Kompella U.B.. Hybrid dendrimer hydrogel/PLGAnanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four daysfollowing one-time topical administration. ACS nano. 2012;6,7595-7606.(6) Bravo-Osuna I., Noiray M.; Briand E.; Woodward A.M.; Argueso P.; Molina Martinez; I.T. Herrero-Vanrell R.; Ponchel G.. Interfacial interaction between transmembrane ocular mucins and adhesivepolymers and dendrimers analyzed by surface plasmon resonance. Pharm. Res. 2012;29, 2329-2340.(7) Bermejo J.F.; Ortega P.; Chonco L.; Eritja R.; Samaniego R.; Mullner M.; de Jesús E.; de la Mata F.J.; Flores J.C.; Gómez R.; Muñoz-Fernández A. . Water-soluble carbosilane dendrimers: synthesisbiocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chem..2007;13, 483-495.(8) Ortega P.; Chonco L.; de Jesús E.; de la Mata F. J.; Fernández G.; Flores J. C.; Gómez R.; SerramíaM. J.; Muñoz-Fernández M. A.. Novel water-soluble carbosilane dendrimers: Synthesis andbiocompatibility. Eur J Inorg Chem. 2006,1388-1396.9) Rasines B.; Sanchez-Nieves J.; Maiolo M.; Maly M., Chonco L.; Jimenez J.L.,; Muñoz-Fernández M.A.; de la Mata F. J.; Gómez R.. Synthesis, structure and molecular modelling of anionic carbosilanedendrimers. Dalton Trans. 2012;41, 12733-12748.(10) Sánchez-Nieves J.; Muñoz-Fernández M. Á.; Gómez R.; de la Mata F. J.. Synthesis of carbosilanedendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetra. 2010;66: 9203-9213.(11) Andres-Guerrero V.; Alarma-Estrany P.; Molina-Martinez I.T.; Peral A.; Herrero-Vanrell R.; PintorJ.. Ophthalmic formulations of the intraocular hypotensive melatonin agent 5-MCA-NAT. Exp. Eye Res.2009;88, 504-511.(12) Efron N.. Grading scales for contact lens complications. Ophthalmic. Physiol. Opt. 1998;18, 182-186.(13) Fan X.; White I.M.; Shopova S.I.; Zhu H.; Suter J.D.; Sun Y.. Sensitive optical biosensors forunlabeled targets: a review. Anal. Chim. Acta. 2008;620: 8-26.(14) Purslow C.; Wolffsohn J.S.. Ocular surface temperature: a review. Eye & contact lens. 2005;31, 117-123.(15) Sánchez-Nieves J.; Pulido D.; Lorente R.; Muñoz-Fernández M.A; Albericio F.; Royo M.; GómezR.; de la Mata F. J.. Amphiphilic Cationic Carbosilane PEG Dendrimers: Synthesis and Applications inGene Therapy. Eur J Med Chem. 2014;76, 43-52.(16) Kitchens K.M.; Kolhatkar R.B.; Swaan P.W.; Eddington N.D.; Ghandehari H.. Transport ofpoly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescentlabeling. Pharm. Res. 2006;23, 2818-2826.(17) Hong S.; Leroueil P.R.; Janus E.K.; Peters J.L.; Kober M.M.; Islam M.T.; Orr B. G.; Baker J. R.;Bariszak Holl M. M... Interaction of polycationic polymers with supported lipid bilayers and cells:nanoscale hole formation and enhanced membrane permeability. Bioconj. Chem.. 2006;17, 728-734.(18) Gupta U.; Agashe H.B.; Asthana A.; Jain N.K.. A review of in vitro-in vivo investigations ondendrimers: the novel nanoscopic drug carriers. Nanomed.Nanotechn. Biol. Med.. 2006;2, 66-73.(19) Pietersz G.A.; Tang C.K.; Apostolopoulos V.. Structure and design of polycationic carriers for genedelivery. Mini reviews in medicinal chemistry. 2006;6, 1285-1298.(20) Cheng Y.; Xu Z.; Ma M.; Xu T. . Dendrimers as drug carriers: applications in different routes ofdrug administration. J. Pharm. Sci. 2008;97, 123-143.(21) Kukowska-Latallo J.F., Candido K.A., Cao Z.; Nigavekar S.S.; Majoros I.J.; Thomas T.P.; BaloghL.P.; Khan M.K.; Baker J.R.. Nanoparticle targeting of anticancer drug improves therapeutic response inanimal model of human epithelial cancer. Cancer Res. 2005;65, 5317-5324.(22) Jevprasesphant R.; Penny J.; Attwood D., McKeown N.B.; D'Emanuele A.. Engineering ofdendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 2003;20,1543-1550.(23) Aillon K.L.; Xie Y., El-Gendy N.; Berkland C.J.; Forrest M.L.. Effects of nanomaterialphysicochemical properties on in vivo toxicity. Adv. Drug Der. Rev. 2009;61, 457-466.(24) Dufes C.; Uchegbu I.F.; Schatzlein A.G.. Dendrimers in gene delivery. Adv. Drug Del. Rev. 2005;57,2177-2202.(25) Duncan R.;. Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Del. Rev.. 2005;57, 2215-2237.(26) Boas U.; Heegaard P.M.. Dendrimers in drug research. Chem. Soc. Rev. 2004;33, 43-63.(27) Fischer D.; Li Y.; Ahlemeyer B.; Krieglstein J.; Kissel T.. In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis. Biomat.. 2003;24, 1121-1131.(28) Reddy J. A.; Dean D.; Kennedy M.D.; Low P.S.. Optimization of folate-conjugated liposomalvectors for folate receptor-mediated gene therapy. J. Pharm. Sci.. 1999;88, 1112-1118.(29) Ludwig A.. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Del. Rev.2005;57, 1595-1639.(30) Besenicar M.; Macek P.; Lakey J.H.; Anderluh G.. Surface plasmon resonance in protein-membraneinteractions. Chem. Phys Lip.. 2006;141, 169-178.(31) Oli M.W.; McArthur W.P.; Brady L.J.; A whole cell BIAcore assay to evaluate P1-mediatedadherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. J.Microbiol. Met.. 2006;65, 503-511.(32) Hoa X.D.; Kirk A.G.; Tabrizian M.. Towards integrated and sensitive surface plasmon resonancebiosensors: a review of recent progress. Biosens.Bioelectr.. 2007;23, 151-160.(33) Kaur I.P.; Singh M.; Kanwar M.. Formulation and evaluation of ophthalmic preparations ofacetazolamide. Int. J. Pharm. 2000;199, 119-127.(34) Omaima N.;. El-Gazayerly A.H.H. Preparation and evaluation of acetazolamide liposomes as anocular delivery system. Int. J. Pharm. 1997;158, 121-127.(35) Ammar H.O.; El-Nahhas S.A.; Khalil R.M.. Cyclodextrins in acetazolamide eye drop formulations.Die Pharmazie. 1998;53, 559-562.(36) Palma S.D.; Tartara L.I.; Quinteros D.; Allemandi D.A.; Longhi M.R.; Granero G.E.. An efficientternary complex of acetazolamide with HP-ss-CD and TEA for topical ocular administration. J. Control.Release 2009;138, 24-31.(37) Aggarwal D.; Garg A.; Kaur I.P.. Development of a topical niosomal preparation of acetazolamide:preparation and evaluation. J Pharm. Pharmacol.. 2004;56, 1509-1517.(38) Tartara L.I.; Quinteros D.A.; Saino V.; Allemandi D.A.; Palma S.D.. Improvement of acetazolamideocular permeation using ascorbyl laurate nanostructures as drug delivery system. J. Ocular Pharmacol.Ther. 2012;28, 102-109.) Mishra V.; Jain N.K. Acetazolamide encapsulated dendritic nano-architectures for effectiveglaucoma management in rabbits. Int. J. Pharm.. 2014;461, 380-390.(40) Garcia-Valldecabres M.; Lopez-Alemany A.; Refojo M.F.. pH stability of ophthalmic solutions.Optometry. 2004;75, 161-8. NO Ministerio de Economía, Industria y Competitividad (MINECO) NO Comunidad de Madrid NO Instituto de Salud Carlos III NO Universidad Complutense de Madrid NO Institute de Chimie du Centre National de Recherche Scientifique du France (CNRS) NO US National Institutes of Health DS Docta Complutense RD 16 may 2024