RT Journal Article T1 Yano’s conjecture for two-Puiseux-pair irreducible plane curve singularities A1 Bartolo, E. A. A1 Cassou-Nogués, P. A1 Luengo, I. A1 Melle Hernández, Alejandro AB In 1982, Tamaki Yano proposed a conjecture predicting the b-exponents of an irreducible plane curve singularity germ that is generic in its equisingularity class. In this article, we prove the conjecture for the case in which the irreducible germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. This hypothesis on the monodromy implies that the b-exponents coincide with the opposite of the roots of the Bernstein polynomial, and we compute the roots of the Bernstein polynomial. © 2017 Research Institute for Mathematical Sciences, Kyoto University. PB European Mathematical Society SN 0034-5318 YR 2017 FD 2017 LK https://hdl.handle.net/20.500.14352/17723 UL https://hdl.handle.net/20.500.14352/17723 LA eng NO Ministerio de Ciencia e Innovación (MICINN) NO Gobierno de Aragón/Fondo Social Europeo DS Docta Complutense RD 6 abr 2025