RT Journal Article T1 Projective normality and syzygies of algebraic surfaces A1 Gallego Rodrigo, Francisco Javier A1 Purnaprajna, Bangere P. AB In this work we develop new techniques to compute Koszul cohomology groups for several classes of varieties. As applications we prove results on projective normality and syzygies for algebraic surfaces. From more general results we, obtain in particular the following: (a) Mukai's conjecture (and stronger variants of it) regarding projective normality and normal presentation for surfaces with Kodaira dimension 0, and uniform bounds for higher syzygies associated to adjoint linear series, (b) effective bounds along the lines of Mukai's conjecture regarding projective normality and normal presentation for surfaces of positive Kodaira dimension, and, (c) results on projective normality for pluricanonical models of surfaces of general type (recovering and strengthening results by Ciliberto) and generalizations of them to higher syzygies. In addition, we also extend the above results to singular surfaces. PB Walter de Gruyter SN 0075-4102 YR 1999 FD 1999 LK https://hdl.handle.net/20.500.14352/57295 UL https://hdl.handle.net/20.500.14352/57295 LA spa NO Erratum ibid. 523, 233-234 (2000) NO DGES DS Docta Complutense RD 10 abr 2025