%0 Journal Article %A Acosta, Javier %A Nguyen, Kim %A Spitale, Robert C. %A Fernández Lucas, Jesús %T Taylor-made production of pyrimidine nucleoside-5′-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii %D 2021 %@ 0960-8524 %U https://hdl.handle.net/20.500.14352/109276 %X Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg−1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g−1biocat; 92% retained activity; 3–5 fold enhanced stability at 50–60 °C) and MGlUPRT2N (3711 IU g−1biocat; 27% retained activity; 8–20 fold enhanced stability at 50–60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times. %~