RT Journal Article T1 Insights into the Kinetics Degradation of Bisphenol A byCatalytic Wet Air Oxidation with Metals Supported ontoCarbon Nanospheres A1 Serra Pérez, Estrella A1 García Rodríguez, Juan AB Emerging pollutants are an increasing problem in wastewater globally. Bisphenol A (BPA) is one compound belonging to this group. This work proposes the study of the employment of several metal-supported (2 wt. %) carbon nanospheres (CNS) for BPA degradation by catalytic wet-air oxidation. Several techniques were used for the catalyst characterization: thermogravimetry, X-ray diffractometry (XRD), Fourier transformed infrared spectrometry (FTIR), determination of isoelectric point, elemental analysis, X-ray fluorescence (XRF), scanning electron microscopy (SEM), and N2 adsorption–desorption isotherms. Different loads of Ru in the catalyst were also tested for BPA degradation (1, 2, 5, 7, and 10%), being the first minimum value to achieve a conversion above 97% in 90 min 2 wt. % of Ru in the CNS-Ru catalyst. In the stability test with CNS-Ru and CNS-Pt, CNS-Pt demonstrated less activity and stability. Two potential models were proposed to adjust experimental data with CNS-Ru(2%) at different conditions of BPA initial concentration, catalyst mass, temperature, and pressure of the reaction. Both models showed a high determination coefficient (R2 > 0.98). Finally, the efficiency of CNS-Ru and CNS-Pt was tested in a real hospital wastewater matrix obtaining better results the CNS-Pt(2%) catalyst. PB MDPI SN 2073-4344 YR 2021 FD 2021 LK https://hdl.handle.net/20.500.14352/7460 UL https://hdl.handle.net/20.500.14352/7460 LA eng NO Comunidad de Madrid DS Docta Complutense RD 8 abr 2025