RT Journal Article T1 Red luminescence of Cr in ß-Ga_2O_3 nanowires A1 Nogales Díaz, Emilio A1 García, José A. A1 Méndez Martín, Bianchi A1 Piqueras de Noriega, Javier AB Red luminescence emission from chromium doped ß-Ga_2O_3 nanowires has been studied by means of photoluminescence (PL) techniques. PL excitation shows several bands in the ultraviolet-visible region. Time decay values, obtained by time resolved PL, at different temperatures fit a three level model with thermal population of the upper level from the middle one. From the results, the origin of the emission is assigned to Cr^3+ ions in the ß-Ga_2O_3 host, and values for the energy level separation and Huang-Rhys factor of the broad^4T_2^(-4)A_2 emission are estimated. PB American Institute of Physics SN 0021-8979 YR 2007 FD 2007-02-01 LK https://hdl.handle.net/20.500.14352/50945 UL https://hdl.handle.net/20.500.14352/50945 LA eng NO 1.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).2. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, Phys. Rev. B 69, 075304 (2004).3. D. P. Yu, J. L. Bubendorff, J. F. Zhou, Y. Leprince-Wang, and M. Troyon, Solid State Commun. 124, 417 (2002).4. L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998).5. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005).6. T. Miyata, T. Nakatani, and T. Minami, J. Lumin. 87-89, 1183 (2000).7. T. Li, S. G. Yang, and Y. W. Du, Nanotechnology 16, 365 (2005).8. I. S. Altman, P. V. Pikhitsa, M. Choi, H. J. Song, A. G. Nasibulin, and E. I. Kauppinen, Phys. Rev. B 68, 125324 (2003).9. I. S. Altman, P. V. Pikhitsa, M. Choi, J. I. Jeong, H.-J. Song, I. E. Agranovski, and T. E. Bostrom, Appl. Phys. Lett. 83, 3689 (2003).1. 0P. Kisliuk and C. A. Moore, Phys. Rev. 160, 307 (1967).11. M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, Appl. Phys. B: Photophys. Laser Chem. 51, 132 (1990).12. T. H. Maiman, Nature (London) 187, 493 (1960).13. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).14. F. Agulló-López, C. R. A. Catlow, and P. D. Townsend, Point Defects in Materials (Academic, London, 1988).15. W. H. Fonger and C. W. Struck, Phys. Rev. B 11, 3251 (1975).16. H. H. Tippins, Phys. Rev. 137, A865 (1965).17. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, Proc. SPIE 2698, 255 (1996).18. S. Fujihara and Y. Shibata, J. Lumin. 121, 470 (2006).19. L. Binet and D. Gourier, Appl. Phys. Lett. 77, 1138 (2000).20. M. Toth and M. R. Phillips, Appl. Phys. Lett. 75, 3983 (1999).21. M. A. Blanco, M. B. Sahariah, H. T. Jiang, A. Costales, and R. Pandey, Phys. Rev. B 72, 184103 (2005).22. D. Vivien, B. Viana, A. Revcolevschi, J. D. Barrie, B. Dunn, P. Nelson, and O. M. Stafsudd, J. Lumin. 39, 29 (1987). NO © 2007 American Institute of Physics. This work has been supported by MEC Project No. MAT2003-00455 and UCM-CM Group 910146. NO MEC NO UCM-CM DS Docta Complutense RD 6 may 2024