RT Journal Article T1 Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions A1 Mavinga, Nsoki A1 Pardo San Gil, Rosa María AB We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle. PB Cambridge University Press YR 2017 FD 2017 LK https://hdl.handle.net/20.500.14352/18101 UL https://hdl.handle.net/20.500.14352/18101 LA eng NO Ministerio de Economía y Competitividad (MINECO) NO Universidad Complutense de Madrid DS Docta Complutense RD 9 abr 2025