RT Journal Article T1 On the homology of metacyclic coverings A1 Costa Gonzalez, A.F. A1 Ruiz Sancho, Jesús María AB In this paper the authors study irregular metacyclic branched covering spaces. These arise as follows: Suppose G is a Z/m extension of Z/n. Then G contains a cyclic subgroup of order m, Cm, which we suppose is not normal. Suppose G acts on a PL manifold X. Then there are maps X→X/Cm→X/G. The map M=X/Cm→X/G=S is an irregular metacyclic covering. (It is not induced by the action of a group on M because Cm is not normal.) In the most interesting case S is a simply connected manifold, often a sphere. Then M→S is a covering space in the usual sense away from a codimension 2 subset of S, called the branch set. Usually the branch set is taken to be a knot or link in S. Regular branched coverings have been widely studied in many contexts (knot theory, algebraic geometry, etc.), but irregular coverings have been much less studied although they are important also. For example, every closed oriented 3-manifold is a 3-fold irregular covering of S3 with branch set a knot. (This is the case G equals the dihedral group of order 6.). That this result does not generalize to dihedral groups of order 2p, p an odd prime, follows from Theorem 2 of this paper, which is too technical to state here. But specializing Theorem 2 to the context of rational homology and dihedral groups of order 2p, p an odd prime, the authors obtain the following theorem: dimH1(M;Q)≡0 modulo 1/2(p−1). The methods of proof in the paper are algebraic. PB Springer SN 0025-5831 YR 1986 FD 1986 LK https://hdl.handle.net/20.500.14352/64778 UL https://hdl.handle.net/20.500.14352/64778 LA eng DS Docta Complutense RD 28 dic 2025