RT Journal Article T1 Quantifying the suppression of the (un)-obscured star formation in galaxy cluster cores at 0.2 10^(10) Mꙩ) samples of star-forming cluster members (not)-detected in the mid- and/or far-infrared. We release the catalogues with the photometry, photometric redshifts, and physical properties of these samples. We also quantify the SF displayed by comparable field samples from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We find that in intermediatez cluster cores, the SF activity is suppressed with respect the field in terms of both the fraction (F) of star-forming galaxies (SFGs) and the rate at which they form stars (SFR and sSFR = SFR/M∗). On average, the F of SFGs is a factor ∼2 smaller in cluster cores than in the field. Furthermore, SFGs present average SFR and sSFR typically ∼0.3 dex smaller in the clusters than in the field along the whole redshift range probed. Our results favour long time-scale quenching physical processes as the main driver of SF suppression in the inner cores of clusters since z ∼0.9, with shorter time-scale processes being very likely responsible for a fraction of the missing SFG population. PB Oxford University Press. SN 0035-8711 YR 2019 FD 2019-05 LK https://hdl.handle.net/20.500.14352/13587 UL https://hdl.handle.net/20.500.14352/13587 LA eng NO © 2019 The Author(s). The authors thank Françoise Combes, Carlos López-Sanjuan, Dieter Lutz, Bianca Poggianti, and Alvio Renzini for their suggestions to improve this work. We acknowledge funding from the INAF PRINSKA 2017 program 1.05.01.88.04. LR-M acknowledges funding support from the Università degli studi di Padova – Dipartimento di Fisica e Astronomia ‘G. Galilei’. GR and CM acknowledge support from an INAF PRIN-SKA 2017 grant. PGP-G acknowledges funding support from the Spanish Government MINECO under grants AYA2015-70815-ERC and AYA2015-63650-P. ACE acknowledges support from STFC grant ST/P00541/1. AM acknowledges funding from the INAF PRIN-SKA 2017 program 1.05.01.88.04. Analyses were performed in R 3.4.0 (R Core Team 2018). NO Ministerio de Economía y Competitividad (MINECO) NO INAF PRINSKA 2017 program NO Università degli studi di Padova – Dipartimento di Fisica e Astronomia ‘G. Galilei’ NO INAF NO STFC DS Docta Complutense RD 5 abr 2025