RT Journal Article T1 Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on venus: the effect of the beta-atla-themis anomaly A1 Romeo Briones, Ignacio AB Detailed Monte Carlo models of the interaction of impact cratering and volcanic resurfacing, which included the Beta-Atla-Themis (BAT) volcanic concentration, were used to test different planetary resurfacing histories. The results were compared with: (1) the randomness of the spatial distribution of craters, (2) the number of modified craters, (3) the number of dark-floored craters due to volcanic flooding, (4) the frequency-area distribution of volcanic units, (5) the frequency-size distribution of craters and modified craters, and (6) the spatial distribution of craters and modified craters with respect to the BAT anomaly. Two catastrophic and two equilibrium resurfacing models were tested. The two catastrophic models consisted of one with a drastic decay and the other with a moderate decay of volcanic activity following the catastrophic event. The two equilibrium models consisted of one with a gradual decay of volcanic activity at the end of the model and the other with a magmatic event followed by a gradual decay of volcanic activity. Both equilibrium models and the catastrophic model with moderate decay fail to reproduce the small reduction of the crater density in the BAT area. The model that best fits all the observations is a global catastrophic resurfacing event followed by a drastic decay of volcanic activity. Thus, a Venus global catastrophic resurfacing event erasing all previous craters with little post-resurfacing volcanism is supported by this study. PB Elsevier SN 0032-0633 YR 2013 FD 2013-07-29 LK https://hdl.handle.net/20.500.14352/34545 UL https://hdl.handle.net/20.500.14352/34545 LA eng NO Received 22 April 2013 / Revised 3 July 2013 / Accepted 17 July 2013 / Available online 29 July 2013. DS Docta Complutense RD 2 may 2024