RT Journal Article T1 Structural and cathodoluminescence assessment of transition metal oxide nanostructures grown by thermal deposition methods A1 Díaz-Guerra Viejo, Carlos A1 Chioncel, M. A1 Piqueras de Noriega, Javier AB Nanostructures of two transition metal oxides, WO(3) and α-Fe_2O_3, have been grown by a thermal deposition method without a catalyst and characterized by x-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy and cathodoluminescence (CL) in the SEM. WO(3) micro and nanorods exhibit CL emission two orders of magnitude higher than CL intensity from the untreated oxide. α-Fe_2O_3 nanostructures with different morphologies (wires, belts, rods, urchins) were grown at different temperatures on Fe substrates. CL spectra of these nanostructures show emission bands related to charge transfer and ligand field transitions. PB Academic Press LTD-Elsevier Science LTD SN 0749-6036 YR 2009 FD 2009-04 LK https://hdl.handle.net/20.500.14352/44222 UL https://hdl.handle.net/20.500.14352/44222 LA eng NO [1] J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. R 52 (2006) 49.[2] M. Feng, A.L. Pan, H.R. Zhang, et al., Appl. Phys. Lett. 86 (2005) 141901.[3] K. Bange, T. Gambke, Adv. Mater. 2 (1990) 10.[4] J.Y. Luo, F.L. Zhao, L. Gong, et al., Appl. Phys. Lett. 91 (2007) 093124.[5] T. Ohmori, H. Takahashi, H. Mametsuka, E. Suzuki, Phys. Chem. Chem. Phys. 2 (2000) 3519.[6] S. Mitra, S. Das, K. Mandal, S. Chaudhuri, Nanotechnology 18 (2007) 275608.[7] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15 (2003) 1296.[8] J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N. Xu, Z.L. Wang, Adv. Mater. 17 (2005) 2107.[9] H. Yang, S. Liu, J. Li, M. Li, G. Peng, G. Zou, Nanotechnology 17 (2006) 1519.[10] C. Paracchini, G. Schianchi, Phys. Status. Solidi. (a) 72 (1982) K19.[11] S.Z. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, L.W. Wang, Phys. Rev. B 68 (2003) 233204.[12] K. Lee, W.K. Seo, J.T. Park, J. Am. Chem. Soc. 125 (2003) 3409.[13] C. Shi, Y. Wei, X. Yang, D. Zhou, C. Guo, J. Liao, H. Tang, Chem. Phys. Lett. 328 (2000) 1.[14] X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S. Yang, J. Phys. Chem. B 109 (1995) 215.[15] L.A. Marusak, R. Messier, W.B. White, J. Phys. Chem. Solids 41 (1980) 981.[16] D.M. Sherman, T.D. Waite, Am. Mineral. 70 (1985) 1262.[17] Y.P. He, Y.M. Miao, C.R. Li, et al., Phys. Rev. B 71 (2005) 125411. [18] B.S. Zou, V. Volkov, J. Phys. Chem. Solids 261 (2000) 2757.[19] A.A. Akl, Appl. Surf. Sci. 233 (2004) 307.[20] Q. Han, Y.Y. Xu, Y.Y. Fu, et al., Chem. Phys. Lett. 431 (2006) 100.[21] B.S. Zou, W. Huang, M.Y. Han, S. Li, X. Wu, Y. Zhang, J. Zhang, P. Wu, R.J. Wang, Phys. Chem. Sol. 58 (1997) 1315.[22] S. Zeng, K. Tang, T. Li, J. Colloid Interface Sci. 312 (2007) 513.[23] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J. Zhang, J. Phys. Chem. B 120 (1998) 770. NO ©2008 Elsevier Ltd. All rights reserved.International Workshop on Beam Injection Assessment of Microstructure in Semiconductors (9. 2008. Toledo, España).This work has been supported by MEC through project MAT2006-01259. MFC acknowledges The financial support received from UCM and Banco Santander. NO MEC NO UCM - Banco Santander DS Docta Complutense RD 16 may 2024