RT Journal Article T1 Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol-water media A1 Barragán García, Vicenta María A1 García Villaluenga, Juan Pedro A1 Godino Gómez, María Paz A1 Izquierdo Gil, María Amparo A1 Ruiz Bauzá, Carlos A1 Seoane Rodríguez, Benjamín AB Electro-osmosis experiments through three cation-exchange membranes with different morphology and similar electric properties have been performed using methanol-water solutions under different experimental conditions. The influence on the electro-osmotic transport of the percentage of methanol on solvent with two different electrolytes, NaCl and LiCl, has been studied. The experimental results show that the presence of methanol in the solutions affects strongly the electro-osmotic flow, and this influence is different depending on the membrane morphology. Correlations among electro-osmotic permeability, swelling behavior, and cell resistance are studied for these membrane systems at different percentages of methanol in solvent. PB Elsevier Science BV SN 0378-7753 YR 2008 FD 2008-12-01 LK https://hdl.handle.net/20.500.14352/50544 UL https://hdl.handle.net/20.500.14352/50544 LA eng NO [1] S.R. De Groot, Thermodynamics of Irreversible Processes, 4th edition, North Holland Publishing Co., Amsterdam, 1966.[2] F. Helfferich, Ion Exchange, Dover Publication Inc., London, 1995.[3] G.J.M. Janssen, M.L.J. Overdelde, J. Power Sources 101 (2001) 117–125.[4] B. Gurau, E.S. Smotkin, J. Power Sources 112 (2002) 339–352.[5] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70–74.[6] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909–917.[7] B.S. Pivovar, Polymer 47 (2006) 4194–4202.[8] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Membr. Sci. 236 (2004) 109–120.[9] G.J. Janz, in: D.J.G. Ives, G.J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961, pp. 179–230.[10] V.M. Barragán, C. Ruiz-Bauzá, J.I. Mengual, J. Colloid Interf. Sci. 168 (1994) 458–464.[11] R. Lteif, L. Dammak, C. Larchet, B. Auclair, Eur. Polym. J. 35 (1999) 1187–1195.[12] E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, J. Colloid Interf. Sci. 285 (2005) 247–258.[13] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd edition, Butterworths Scientific Publications, London, 1959.[14] M. Kameche, C. Innocent, F. Xu, G. Pourcelly, Z. Derriche, Desalination 168 (2004) 319–327.[15] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interf. Sci. 247 (2002) 138–148.[16] S. Kjelstrup, T. Okada, M. Ott∅y, in: T.B. S∅rensen (Ed.), Surface Chemistry and Electrochemistry of Membranes, vol. 79, Marcel Dekker, New York, 1999, pp. 455–481.[17] V.S. Bagotzky, Fundamentals of Electrochemistry, Plenum Press, New York,1993.[18] S. Nouri, L. Dammak, C. Larchet, B. Auclair, Desalination 147 (2002)363–368.[19] T. Schaffer, T. Tshinder, V. Hacker, J.O. Besenhard, J. Power Sources 153 (2006)210–216.[20] N. Laksminarayanaiah, J. Electrochem. Soc. 116 (1969) 338–342.[21] B.S. Pivovar,W. Smyrl, E.L. Cussler, J. Electrochem. Soc. 152 (2005) A53–A60.[22] E. Skou, P. Kauranen, Solid State Ionics 97 (1997) 333–337.[23] T.J. Chou, A. Tanioka, J. Membr. Sci. 144 (1988) 275–284. NO © 2008 Elsevier B.V, The authors gratefully acknowledge Prof. C. Larchet and Prof. V. Nikonenko for donating MK40 membrane samples. Financial support from Comunidad de Madrid and Universidad Complutense de Madrid under project CCG06(UCM/MAT(1037 is also gratefully acknowledged. NO Comunidad de Madrid NO Universidad Complutense de Madrid DS Docta Complutense RD 29 abr 2024