RT Journal Article T1 Insolation driven variations of Mercury’s lithospheric strength A1 Williams, Jean-Pierre A1 Ruiz Pérez, Javier A1 Rosenburg, Margaret A. A1 Aharonson, Oded A1 Phillips, Roger J AB Mercury’s coupled 3:2 spin‐orbit resonance in conjunction with its relatively high eccentricity of ∼0.2 and near‐zero obliquity results in both a latitudinal and longitudinal variation in annual average solar insolation and thus equatorial hot and cold regions. This results in an asymmetric temperature distribution in the lithosphere and a long wavelength lateral variation in lithosphere structure and strength that mirrors the insolation pattern. We employ a thermal evolution model for Mercury generating strength envelopes of the lithosphere to demonstrate and quantify the possible effects the insolation pattern has on Mercury’s lithosphere. We find the heterogeneity in lithosphere strength is substantial and increases with time. We also find that a crust thicker than that of the Moon or Mars and dry rheologies for the crust and mantle are favorable when compared with estimates of brittle‐ductile transition depths derived from lobate scarps. Regions of stronger and weaker compressive strength imply that the accommodation of radial contraction of Mercury as its interior cooled, manifest as lobate scarps, may not be isotropic, imparting a preferential orientation and distribution to the lobate scarps. PB American Geophysical Union SN 0148-0227 YR 2011 FD 2011 LK https://hdl.handle.net/20.500.14352/42353 UL https://hdl.handle.net/20.500.14352/42353 LA eng NO Williams, Jean-Pierre, et al. «Insolation Driven Variations of Mercury’s Lithospheric Strength». Journal of Geophysical Research, vol. 116, n.o E1, enero de 2011, p. E01008. DOI.org (Crossref), https://doi.org/10.1029/2010JE003655. DS Docta Complutense RD 5 abr 2025