RT Journal Article T1 Symmetry-protected topological phases at finite temperature A1 Viyuela, O. A1 Rivas, A. A1 Martín-Delgado Alcántara, Miguel Ángel AB We have applied the recently developed theory of topological Uhlmann numbers to a representative model of a topological insulator in two dimensions, the Qi-Wu-Zhang model. We have found a stable symmetry-protected topological phase under external thermal fluctuations in two dimensions. A complete phase diagram for this model is computed as a function of temperature and coupling constants in the original Hamiltonian. It shows the appearance of large stable phases of matter with topological properties compatible with thermal fluctuations or external noise and the existence of critical lines separating abruptly trivial phases from topological phases. These novel critical temperatures represent thermal topological phase transitions. The initial part of the paper comprises a self-contained explanation of the Uhlmann geometric phase needed to understand the topological properties that it may acquire when applied to topological insulators and superconductors. PB IOP Publishing Ltd. SN 2053-1583 YR 2015 FD 2015-09 LK https://hdl.handle.net/20.500.14352/24334 UL https://hdl.handle.net/20.500.14352/24334 LA eng NO © 2015 IOP Publishing Ltd.We thank the Spanish MINECO grant FIS2012-33152, FIS2009-10061, CAM research consortium QUITEMAD+S2013/ICE-2801, European Commission PICC: FP7 2007-2013 grant No. 249958, UCM-BS grant GICC-910758, FPU MEC grant and Residencia de Estudiantes. NO Unión Europea. FP7 NO Comunidad de Madrid NO Ministerio de Economía y Competitividad (MINECO), España NO European Commission PICC: FP7 2007-2013 NO Séptimo Programa Marco de la UE 7th Framework Program of the European Comission FP7 NO Universidad Complutense de Madrid (UCM) NO Banco Santander Central Hispano (BSCH) NO Residencia de Estudiantes (CSIC), España NO Consejo Superior de Investigaciones Científicas (CSIC), España NO Ministerio de Educación y Ciencia (MEC), España DS Docta Complutense RD 18 abr 2025