RT Journal Article T1 Smart Mesoporous Nanomaterials for Antitumor Therapy A1 Martínez Carmona, Marina A1 Colilla Nieto, Montserrat A1 Vallet Regí, María Dulce Nombre AB The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external (temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment. PB MDPI SN 2079-4991 YR 2015 FD 2015-12 LK https://hdl.handle.net/20.500.14352/23077 UL https://hdl.handle.net/20.500.14352/23077 LA eng NO 1. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H.One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003,15, 353–389.2. Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganicnanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753.3. Vallet-Regí, M.; Arcos, D. Nanoceramics in Clinical Use: From Materials to Applications,2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2015.4. Lanone, S.; Boczkowski, J. Biomedical applications and potential health risks of nanomaterials:Molecular mechanisms. Curr. Mol. Med. 2006, 6, 651–663.5. Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.6. Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443.7. Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissueengineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230.8. Fernandez-Fernandez, A.; Manchanda, R.; McGoron, A. Theranostic applications ofnanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms.Appl. Biochem. Biotechnol. 2011, 165, 1628–1651.9. Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and SurfaceChemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.10. Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug deliveryand therapy. Chem. Soc. Rev. 2012, 41, 2885–2911.11. Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. Thebig picture on nanomedicine: The state of investigational and approved nanomedicine products.Nanomedicine 2013, 9, 1–14.12. Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials:Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.13. Xie, J.; Liu, G.; Eden, H.S.; Ai, H.; Chen, X. Surface-engineered magnetic nanoparticleplatforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.14. Vallet-Regí, M.; Ruiz-Hernandez, E. Bioceramics: From bone regeneration to cancernanomedicine. Adv. Mater. 2011, 23, 5177–5218.15. Baeza, A. Ceramic Nanoparticles for Cancer Treatment. In Bio-Ceramics with ClinicalApplications; Vallet-Regí, M., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 421–455.16. International Agency for Research on Cancer. World Cancer Report; WHO: Geneva,Switzerland, 2014.17. Patil, Y.B.; Swaminathan, S.K.; Sadhukha, T.; Ma, L.; Panyam, J. The use of nanoparticle-mediatedtargeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 2010,31, 358–365.18. Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: Application of nanotechnology incancer therapy. Drug Discov. Today 2010, 15, 842–850.19. Wang, X.; Yang, L.; Chen, Z.; Shin, D.M. Application of nanotechnology in cancer therapy andimaging. CA Cancer J. Clin. 2008, 58, 97–110.Nanomaterials 2015, 5 192620. Andersson, J.; Rosenholm, J.; Areva, S.; Linden, M. Influences of material characteristics onibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices.Chem. Mater. 2004, 16, 4160–4167.21. Scheinberg, D.A.; Villa, C.H.; Escorcia, F.E.; McDevitt, M.R. Conscripts of the infinite armada:Systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010, 7, 266–276.22. Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.;Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited tobioorthogonal chemistry. Bioconjug. Chem. 2011, 22, 825–858.23. Vallet-Regí, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of MCM-41: Drugdelivery system. Chem. Mater. 2001, 13, 308–311.24. Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed.2007, 46, 7548–7558.25. Yang, P.; Quan, Z.; Lu, L.; Huang, S.; Lin, J. Luminescence functionalization of mesoporoussilica with different morphologies and applications as drug delivery systems. Biomaterials 2008,29, 692–702.26. Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.Y. Mesoporous silica nanoparticles ascontrolled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60,1278–1288.27. Yang, P.; Quan, Z.; Hou, Z.; Li, C.; Kang, X.; Cheng, Z.; Lin, J. A magnetic, luminescent andmesoporous core-shell structured composite material as drug carrier. Biomaterials 2009, 30,4786–4795.28. Manzano, M.; Colilla, M.; Vallet-Regí, M. Drug delivery from ordered mesoporous matrices.Expert Opin. Drug Deliv. 2009, 6, 1383–1400.29. Gai, S.; Yang, P.; Li, C.; Wang, W.; Dai, Y.; Niu, N.; Lin, J. Synthesis of magnetic,up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drugcarriers. Adv. Funct. Mater. 2010, 20, 1166–1172.30. Colilla, M.; González, B.; Vallet-Regí, M. Mesoporous silica nanoparticles for the design ofsmart delivery nanodevices. Biomater. Sci. 2013, 1, 114–134.31. Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery.Chem. Soc. Rev. 2012, 41, 3679–3698.32. Argyo, C.; Weiss, V.; Braeuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles asa universal platform for drug delivery. Chem. Mater. 2014, 26, 435–451.33. Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drugdelivery. Adv. Mater. 2012, 24, 1504–1534.34. Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles inbiomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605.35. Baeza, A.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica nanoparticles for targetedstimuli-responsive drug delivery. Expert Opin. Drug Deliv. 2014, 12, 319–337.36. Colilla, M.; Baeza, A.; Vallet-Regí, M. Mesoporous Silica Nanoparticles for Drug Delivery andControlled Release Applications. In The Sol-Gel Handbook; Levy, D., Zayat, M., Eds.;Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Volume 3, pp. 1309–1344.Nanomaterials 2015, 5 192737. Colilla, M.; Vallet-Regí, M. Responsive Mesoporous Silica Nanoparticles for Targeted DrugDelivery. In Chemoresponsive Materials: Stimulation by Chemical and Biological Signals;Schneider, H.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 136–166.38. Vallet-Regí, M.; Manzano, M.; Colilla, M. Biomedical Applications of Mesoporous Ceramics:Drug Delivery, Smart Materials and Bone Tissue Engineering; CRC Press, Taylor & FrancisGroup: Boca Raton, FL, USA, 2012.39. Martínez, Á.; Fuentes-Paniagua, E.; Baeza, A.; Sánchez-Nieves, J.; Cicuéndez, M.; Gómez, R.;de la Mata, F.J.; González, B.; Vallet-Regí, M. Mesoporous silica nanoparticles decorated withcarbosilane dendrons as new non-viral oligonucleotide delivery carriers. Chemistry 2015, 21,15651–15666.40. Colilla, M.; Vallet-Regí, M. Smart Drug Delivery from Silica Nanoparticles. In Smart Materialsfor Drug Delivery; Alvarez-Lorenzo, C.; Concheiro, A., Eds.; Royal Society of Chemistry:Cambridge, UK, 2013; Volume 2, pp. 63–89.41. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micronsize range. J. Colloid Interface Sci. 1968, 26, 62–69.42. Colilla, M. Silica-based Ceramics: Mesoporous Silica. In Bio-Ceramics with ClinicalApplications; Vallet-Regí, M., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 109–151.43. Muñoz, B.; Rámila, A.; Pérez-Pariente, J.; Díaz, I.; Vallet-Regí, M. MCM-41 Organicmodification as drug delivery rate regulator. Chem. Mater. 2003, 15, 500–503.44. Hoffmann, F.; Cornelius, M.; Morell, J.; Froeba, M. Silica-based mesoporous organic-inorganichybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251.45. Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H.-T.; Lin, V.S.Y. Synthesis and functionalization ofa mesoporous silica nanoparticle based on the sol-gel process and applications in controlledrelease. Acc. Chem. Res. 2007, 40, 846–853.46. Vallet-Regí, M.; Colilla, M.; González, B. Medical applications of organic-inorganic hybridmaterials within the field of silica-based bioceramics. Chem. Soc. Rev. 2011, 40, 596–607.47. Grün, M.; Lauer, I.; Unger, K.K. The synthesis of micrometer- and submicrometer-size spheresof ordered mesoporous oxide MCM-41. Adv. Mater. 1997, 9, 254–257.48. Lu, Y.F.; Fan, H.Y.; Stump, A.; Ward, T.L.; Rieker, T.; Brinker, C.J. Aerosol-assisted self-assemblyof mesostructured spherical nanoparticles. Nature 1999, 398, 223–226.49. Brinker, C.J.; Lu, Y.F.; Sellinger, A.; Fan, H.Y. Evaporation-induced self-assembly: Nanostructuresmade easy. Adv. Mater. 1999, 11, 579–585.50. Arcos, D.; López-Noriega, A.; Ruiz-Hernández, E. Ordered mesoporous microspheres for bonegrafting and drug delivery. Chem. Mater. 2009, 21, 1000–1009.51. Colilla, M.; Manzano, M.; Izquierdo-Barba, I.; Vallet-Regí, M.; Boissiére, C.; Sanchez, C.Advanced drug delivery vectors with tailored surface properties made of mesoporous binaryoxides submicronic spheres. Chem. Mater. 2010, 22, 1821–1830.52. Boissiére, C.; Grosso, D.; Chaumonnot, A.; Nicole, L.; Sanchez, C. Aerosol route to functionalnanostructured inorganic and hybrid porous materials. Adv. Mater. 2011, 23, 599–623.53. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.Nanomaterials 2015, 5 192854. Hoffmann, F.; Fröba, M. Vitalising porous inorganic silica networks with organic functions—PMOsand related hybrid materials. Chem. Soc. Rev. 2011, 40, 608–620.55. Liong, M.; Angelos, S.; Choi, E.F.; Zink, J.I. Mesostructured multifunctional nanoparticles forimaging and drug delivery. J. Mater. Chem. 2009, 19, 6251–6257.56. Lin, Y.S.; Tsai, C.P.; Huang, H.Y.; Kuo, C.T.; Hung, Y.; Huang, D.M.; Chen, Y.C.; Mou, C.Y.Well-ordered mesoporous silica nanoparticles as cell markers. Chem. Mater. 2005, 17, 4570–4573.57. Lu, J.; Liong, M.; Sherman, S.; Xia, T.; Kovochich, M.; Nel, A.E.; Zink, J.I.; Tamanoi, F.Mesoporous silica nanoparticles for cancer therapy: Energy-dependent cellular uptake anddelivery of paclitaxel to cancer cells. Nanobiotechnology 2007, 3, 89–95.58. Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Nanomaterials for Theranostics:Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394.59. Langer, R. Drug delivery and targeting. Nature 1998, 392, 5–10.60. Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.61. Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and activetumor targeting of nanocarriers for anti-cancer drug delivery. J. Controll. Release 2010, 148,135–146.62. Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impactof passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014,66, 2–25.63. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy.Mechanism of tumoritropic accumulation of proteins and the antitumor agen smancs. CancerRes. 1986, 46, 6387–6392.64. Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modalityfor cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.65. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects offilaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.66. Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci.USA 2006, 103, 4930–4934.67. Mitragotri, S. In Drug Delivery, Shape Does Matter. Pharm. Res. 2009, 26, 232–234.68. Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The effect of the shape of mesoporous silicananoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.69. Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The shape effect of mesoporoussilica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011,5, 5390–5399.70. Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D.Y.; Zink, J.I.; Nel, A.E. Use of size and a copolymerdesign feature to improve the biodistribution and the enhanced permeability and retention effectof doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model.ACS Nano 2011, 5, 4131–4144.71. Cauda, V.; Argyo, C.; Bein, T. Impact of different PEGylation patterns on the long-termbio-stability of colloidal mesoporous silica nanoparticles. J. Mater. Chem. 2010, 20, 8693–8699.72. Karakoti, A.S.; Das, S.; Thevuthasan, S.; Seal, S. PEGylated Inorganic Nanoparticles. Angew.Chem. Int. Ed. 2011, 50, 1980–1994.Nanomaterials 2015, 5 192973. Cauda, V.; Schlossbauer, A.; Bein, T. Bio-degradation study of colloidal mesoporous silicananoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol).Microporous Mesoporous Mater. 2010, 132, 60–71.74. Ferris, D.P.; Lu, J.; Gothard, C.; Yanes, R.; Thomas, C.R.; Olsen, J.-C.; Stoddart, J.F.; Tamanoi, F.;Zink, J.I. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targetedhydrophobic drug delivery to cancer cells. Small 2011, 7, 1816–1826.75. Fang, W.; Wang, Z.; Zong, S.; Chen, H.; Zhu, D.; Zhong, Y.; Cui, Y. pH-controllable drugcarrier with SERS activity for targeting cancer cells. Biosens. Bioelectron. 2014, 57, 10–15.76. Martínez-Carmona, M.; Baeza, A.; Rodríguez-Milla, M.A.; García-Castro, J.; Vallet-Regí, M.Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxicantitumoral therapy. J. Mater. Chem. B 2015, 3, 5746–5752.77. Mickler, F.M.; Moeckl, L.; Ruthardt, N.; Ogris, M.; Wagner, E.; Braeuchle, C. Tuningnanoparticle uptake: Live-cell imaging reveals two distinct endocytosis mechanisms mediated bynatural and artificial EGFR targeting ligand. Nano Lett. 2012, 12, 3417–3423.78. Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Linden, M.Targeting of porous hybrid silica nanoparticles to Cancer Cells. ACS Nano 2009, 3, 197–206.79. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I.Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano2008, 2, 889–896.80. Lu, J.; Liong, M.; Li, Z.X.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, anddrug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small2010, 6, 1794–1805.81. Lu, J.; Li, Z.; Zink, J.I.; Tamanoi, F. In vivo tumor suppression efficacy of mesoporous silicananoparticles-based drug-delivery system: Enhanced efficacy by folate modification. Nanomed.Nanotechnol. Biol. Med. 2012, 8, 212–220.82. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I.T.; Yang, C.-M.; Ho, J.-A.A.Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drugdelivery: Improved water suspensibility and decreased nonspecific protein binding. ACS Nano2010, 4, 4371–4379.83. Slowing, I.; Trewyn, B.G.; Lin, V.S.Y. Effect of surface functionalization of MCM-41-typemesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc.2006, 128, 14792–14793.84. Porta, F.; Lamers, G.E.M.; Morrhayim, J.; Chatzopoulou, A.; Schaaf, M.; den Dulk, H.;Backendorf, C.; Zink, J.I.; Kros, A. Folic acid-modified mesoporous silica nanoparticles forcellular and nuclear targeted drug delivery. Adv. Healthc. Mater. 2013, 2, 281–286.85. Vivero-Escoto, J.L.; Taylor-Pashow, K.M.L.; Huxford, R.C.; Della Rocca, J.; Okoruwa, C.;An, H.; Lin, W.; Lin, W. Multifunctional mesoporous silica nanospheres with cleavable Gd(III)chelates as MRI contrast agents: Synthesis, characterization, target-specificity, and renalclearance. Small 2011, 7, 3519–3528.86. Rosenholm, J.M.; Peuhu, E.; Bate-Eya, L.T.; Eriksson, J.E.; Sahlgren, C.; Linden, M.Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles asdrug-delivery vectors. Small 2010, 6, 1234–1241.Nanomaterials 2015, 5 193087. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-targeted drug delivery ofTAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012,134, 5722–5725.88. Li, Z.; Dong, K.; Huang, S.; Ju, E.; Liu, Z.; Yin, M.; Ren, J.; Qu, X. A smart nanoassembly formultistage targeted drug delivery and magnetic resonance imaging. Adv. Funct. Mater. 2014, 24,3612–3620.89. Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells bydirect intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles.Biomaterials 2013, 34, 2719–2730.90. Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R. Multifunctional mesoporoussilica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy ofglioma. J. Am. Chem. Soc. 2013, 135, 4799–4804.91. Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D.Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. ColloidsSurfaces B 2014, 116, 652–657.92. Tsai, C.-P.; Chen, C.-Y.; Hung, Y.; Chang, F.-H.; Mou, C.-Y. Monoclonal antibody-functionalizedmesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater.Chem. 2009, 19, 5737–5743.93. Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres aspH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011, 32, 4976–4986.94. Cheng, K.; Blumen, S.R.; MacPherson, M.B.; Steinbacher, J.L.; Mossman, B.T.; Landry, C.C.Enhanced uptake of porous silica microparticles by bifunctional surface modification with atargeting antibody and a biocompatible polymer. ACS Appl. Mater. Interfaces 2010, 2, 2489–2495.95. Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H.F.; Shi, S.; Kwon, G.S.; Theuer, C.P.; Barnhart, T.E.;Cai, W. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013, 7, 9027–9039.96. Villaverde, G.; Baeza, A.; Melen, G.J.; Alfranca, A.; Ramirez, M.; Vallet-Regí, M. A newtargeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma.J. Mater. Chem. B 2015, 3, 4831–4842.97. Cheng, S.-H.; Lee, C.-H.; Chen, M.-C.; Souris, J.S.; Tseng, F.-G.; Yang, C.-S.; Mou, C.-Y.;Chen, C.-T.; Lo, L.-W. Tri-functionalization of mesoporous silica nanoparticles forcomprehensive cancer theranostics-the trio of imaging, targeting and therapy. J. Mater. Chem.2010, 20, 6149–6157.98. Fang, I.J.; Slowing, I.I.; Wu, K.C.W.; Lin, V.S.Y.; Trewyn, B.G. Ligand conformation dictatesmembrane and endosomal trafficking of arginine-glycine-aspartate (RGD)-functionalizedmesoporous silica nanoparticles. Chemistry 2012, 18, 7787–7792.99. Luo, G.-F.; Chen, W.-H.; Liu, Y.; Zhang, J.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z.Charge-reversal plug gate nanovalves on peptide-functionalized mesoporous silica nanoparticlesfor targeted drug delivery. J. Mater. Chem. B 2013, 1, 5723–5732.100. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z.Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drugdelivery. J. Am. Chem. Soc. 2013, 135, 5068–5073.Nanomaterials 2015, 5 1931101. Xiao, D.; Jia, H.-Z.; Zhang, J.; Liu, C.-W.; Zhuo, R.-X.; Zhang, X.-Z. A dual-responsive mesoporoussilica nanoparticle for tumor-triggered targeting drug delivery. Small 2014, 10, 591–598.102. He, L.; Huang, Y.; Zhu, H.; Pang, G.; Zheng, W.; Wong, Y.-S.; Chen, T. Cancer-targetedmonodisperse mesoporous silica nanoparticles as carrier of ruthenium polypyridyl complexes toenhance theranostic effects. Adv. Funct. Mater. 2014, 24, 2754–2763.103. Yang, H.; Zhao, F.; Li, Y.; Xu, M.; Li, L.; Wu, C.; Miyoshi, H.; Liu, Y. VCAM-1-targetedcore/shell nanoparticles for selective adhesion and delivery to endothelial cells withlipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonanceimaging in vitro. Int. J. Nanomed. 2013, 8, 1897–1906.104. Goel, S.; Chen, F.; Hong, H.; Valdovinos, H.F.; Hernandez, R.; Shi, S.; Barnhart, T.E.; Cai, W.VEGF(121)-Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug DeliverySystem. ACS Appl. Mater. Interfaces 2014, 6, 21677–21685.105. Xu, S.; Olenyuk, B.Z.; Okamoto, C.K.; Hamm-Alvarez, S.F. Targeting receptor-mediatedendocytotic pathways with nanoparticles: Rationale and advances. Adv. Drug Deliv. Rev. 2013,65, 121–138.106. Elnakat, H.; Ratnam, M. Distribution, functionality and gene regulation of folate receptorisoforms: Implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, 56, 1067–1084.107. Mendelsohn, J.; Baselga, J. Epidermal growth factor receptor targeting in cancer. Semin. Oncol.2006, 33, 369–385.108. Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer 2012, 12,278–287.109. Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringingnew life to old ideas. Genes Dis. 2015, 2, 26–34.110. Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancerprogression and their pharmacological targeting. FEBS J. 2011, 278, 16–27.111. Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J. Core/shell structured hollowmesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancerdrug delivery. ACS Nano 2010, 4, 6001–6013.112. Aznar, E.; Mondragon, L.; Ros-Lis, J.V.; Sancenon, F.; Dolores Marcos, M.; Martinez-Manez, R.;Soto, J.; Perez-Paya, E.; Amoros, P. Finely tuned temperature-controlled cargo release usingparaffin-capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 11172–11175.113. Jadhav, S.A.; Miletto, I.; Brunella, V.; Berlier, G.; Scalarone, D. Controlled post-synthesisgrafting of thermoresponsive poly(N-isopropylacrylamide) on mesoporous silica nanoparticles.Polym. Adv. Technol. 2015, 26, 1070–1075.114. Schlossbauer, A.; Warncke, S.; Gramlich, P.M.E.; Kecht, J.; Manetto, A.; Carell, T.; Bein, T.A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew. Chem. Int. Ed.2010, 49, 4734–4737.115. Martelli, G.; Zope, H.R.; Capell, M.B.; Kros, A. Coiled-coil peptide motifs as thermoresponsivevalves for mesoporous silica nanoparticles. Chem. Commun. 2013, 49, 9932–9934.116. Zhu, Y.; Liu, H.; Li, F.; Ruan, Q.; Wang, H.; Fujiwara, M.; Wang, L.; Lu, G.Q. Dipolarmolecules as impellers achieving electric-field-stimulated release. J. Am. Chem. Soc. 2010, 132,1450–1451.Nanomaterials 2015, 5 1932117. Ruiz-Hernández, E.; Baeza, A.; Vallet-Regí, M. Smart drug delivery through DNA/magneticnanoparticle gates. ACS Nano 2011, 5, 1259–1266.118. Thomas, C.R.; Ferris, D.P.; Lee, J.-H.; Choi, E.; Cho, M.H.; Kim, E.S.; Stoddart, J.F.; Shin, J.-S.;Cheon, J.; Zink, J.I. Non-invasive remote-controlled release of drug molecules in vitro usingmagnetic actuation of mechanized nanoparticles. J. Am. Chem. Soc. 2010, 132, 10623–10625.119. Baeza, A.; Guisasola, E.; Ruiz-Hernandez, E.; Vallet-Regí, M. Magnetically triggered multidrugrelease by hybrid mesoporous silica nanoparticles. Chem. Mater. 2012, 24, 517–524.120. Saint-Cricq, P.; Deshayes, S.; Zink, J.I.; Kasko, A.M. Magnetic field activated drug deliveryusing thermodegradable azo-functionalised PEG-coated core-shell mesoporous silicananoparticles. Nanoscale 2015, 7, 13168–13172.121. Yang, X.; Liu, X.; Liu, Z.; Pu, F.; Ren, J.; Qu, X. Near-infrared light-triggered, targeted drugdelivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 2012, 24, 2890–2895.122. Zhu, Y.; Fujiwara, M. Installing dynamic molecular photomechanics in mesopores: Amultifunctional controlled-release nanosystem. Angew. Chem. Int. Ed. 2007, 46, 2241–2244.123. Ferris, D.P.; Zhao, Y.-L.; Khashab, N.M.; Khatib, H.A.; Stoddart, J.F.; Zink, J.I. Light-operatedmechanized nanoparticles. J. Am. Chem. Soc. 2009, 131, 1686–1688.124. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L.J.; Feng, P. pH-responsive nanogatedensemble based on gold-capped mesoporous silica through an acid-labile acetal linker.J. Am. Chem. Soc. 2010, 132, 1500–1501.125. Gan, Q.; Lu, X.; Yuan, Y.; Qian, J.; Zhou, H.; Lu, X.; Shi, J.; Liu, C. A magnetic, reversiblepH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica.Biomaterials 2011, 32, 1932–1942.126. Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X. Nanoceria-triggered synergetic drugrelease based on CeO2-capped mesoporous silica host-guest interactions and switchableenzymatic activity and cellular effects of CeO2. Adv. Healthc. Mater. 2013, 2, 1591–1599.127. Feng, W.; Zhou, X.; He, C.; Qiu, K.; Nie, W.; Chen, L.; Wang, H.; Mo, X.; Zhang, Y.Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drugdelivery: Layer thickness-dependent release profiles and biocompatibility. J. Mater. Chem. B2013, 1, 5886–5898.128. Meng, H.; Xue, M.; Xia, T.; Zhao, Y.-L.; Tamanoi, F.; Stoddart, J.F.; Zink, J.I.; Nel, A.E.Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles bypH-sensitive nanovalves. J. Am. Chem. Soc. 2010, 132, 12690–12697.129. Gao, Y.; Yang, C.; Liu, X.; Ma, R.; Kong, D.; Shi, L. A multifunctional nanocarrier based onnanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery.Macromol. Biosci. 2012, 12, 251–259.130. Rim, H.P.; Min, K.H.; Lee, H.J.; Jeong, S.Y.; Lee, S.C. pH-tunable calcium phosphate coveredmesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew.Chem. Int. Ed. 2011, 50, 8853–8857.131. Ma, X.; Nguyen, K.T.; Borah, P.; Ang, C.Y.; Zhao, Y. Functional silica nanoparticles forredox-triggered drug/ssDNA co-delivery. Adv. Healthc. Mater. 2012, 1, 690–697.Nanomaterials 2015, 5 1933132. Zhang, J.; Niemela, M.; Westermarck, J.; Rosenholm, J.M. Mesoporous silica nanoparticles withredox-responsive surface linkers for charge-reversible loading and release of short oligonucleotides.Dalton Trans. 2014, 43, 4115–4126.133. Lai, C.-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S.Y.A mesoporous silica nanosphere-based carrier system with chemically removable CdSnanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drugmolecules. J. Am. Chem. Soc. 2003, 125, 4451–4459.134. Nadrah, P.; Porta, F.; Planinsek, O.; Kros, A.; Gaberscek, M. Poly(propylene imine) dendrimercaps on mesoporous silica nanoparticles for redox-responsive release: Smaller is better. Phys.Chem. Chem. Phys. 2013, 15, 10740–10748.135. Agostini, A.; Mondragón, L.; Coll, C.; Aznar, E.; Marcos, M.D.; Martínez-Máñez, R.; Sancenón, F.;Soto, J.; Pérez-Payá, E.; Amorós, P. Dual enzyme-triggered controlled release on cappednanometric silica mesoporous supports. ChemistryOpen 2012, 1, 17–20.136. Van Rijt, S.H.; Bölükbas, D.A.; Argyo, C.; Datz, S.; Lindner, M.; Eickelberg, O.; Königshoff, M.;Bein, T.; Meiners, S. Protease-mediated release of chemotherapeutics from mesoporous silicananoparticles to ex vivo human and mouse lung tumors. ACS Nano 2015, 9, 2377–2389.137. Singh, N.; Karambelkar, A.; Gu, L.; Lin, K.; Miller, J.S.; Chen, C.S.; Sailor, M.J.; Bhatia, S.N.Bioresponsive mesoporous silica nanoparticles for triggered drug release. J. Am. Chem. Soc.2011, 133, 19582–19585.138. Park, C.; Kim, H.; Kim, S.; Kim, C. Enzyme responsive nanocontainers with cyclodextringatekeepers and synergistic effects in release of guests. J. Am. Chem. Soc. 2009, 131,16614–16615.139. Baeza, A.; Guisasola, E.; Torres-Pardo, A.; González-Calbet, J.M.; Melen, G.J.; Ramirez, M.;Vallet-Regí, M. Hybrid enzyme-polymeric capsules/mesoporous silica nanodevice for in situcytotoxic agent generation. Adv. Funct. Mater. 2014, 24, 4625–4633.140. Mas, N.; Arcos, D.; Polo, L.; Aznar, E.; Sánchez-Salcedo, S.; Sancenón, F.; García, A.;Marcos, M.D.; Baeza, A.; Vallet-Regí, M.; Martínez-Máñez, R. Towards the development ofsmart 3D “gated scaffolds” for on-command delivery. Small 2014, 10, 4859–4864.141. Aznar, E.; Villalonga, R.; Gimenez, C.; Sancenon, F.; Marcos, M.D.; Martinez-Mañez, R.;Diez, P.; Pingarron, J.M.; Amoros, P. Glucose-triggered release using enzyme-gated mesoporoussilica nanoparticles. Chem. Commun. 2013, 49, 6391–6393.142. Climent, E.; Bernardos, A.; Martínez-Máñez, R.; Maquieira, A.; Marcos, M.D.; Pastor-Navarro,N.; Puchades, R.; Sancenón, F.; Soto, J.; Amorós, P. Controlled delivery systems usingantibody-capped mesoporous nanocontainers. J. Am. Chem. Soc. 2009, 131, 14075–14080.143. He, X.; Zhao, Y.; He, D.; Wang, K.; Xu, F.; Tang, J. ATP-responsive controlled release systemusing aptamer-functionalized mesoporous silica nanoparticles. Langmuir 2012, 28,12909–12915.144. Álvarez-Lorenzo, C.; Concheiro, A. From Drug Dosage Forms to Intelligent Drug-deliverySystems: A Change of Paradigm. In Smart Materials for Drug Delivery; Royal Society ofChemistry: London, UK, 2013; Volume 1, pp. 1–32.145. Gustafson, T.P.; Cao, Q.; Wang, S.; Berezin, M.Y. Design of irreversible optical nanothermometersfor thermal ablations. Chem. Commun. 2013, 49, 680–682.Nanomaterials 2015, 5 1934146. Nuyken, O.; Dauth, J.; Pekruhn, W. Synthesis and application of thermosensitive microcapsulescontaining azo groups. Die Angew. Makromol. Chem. 1991, 187, 207–224.147. Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for Drug DeliverySystems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173.148. Gilman, M.; Gilman, S.L. Electrotherapy and the human voice: A literature review of thehistorical origins and contemporary applications. J. Voice 2008, 22, 219–231.149. Gilula, M.F. Cranial electrotherapy stimulation and fibromyalgia. Expert Rev. Med. Devices2007, 4, 489–495.150. Ciria, H.C.; Quevedo, M.S.; Cabrales, L.B.; Bruzon, R.P.; Salas, M.F.; Pena, O.G.; González, T.R.;Lopez, D.S.; Flores, J.M. Antitumor effectiveness of different amounts of electrical charge inEhrlich and fibrosarcoma Sa-37 tumors. BMC Cancer 2004, 4, 11.151. Santini, J.T.; Cima, M.J.; Langer, R. A controlled-release microchip. Nature 1999, 397, 335–338.152. Kwon, I.C.; Bae, Y.H.; Kim, S.W. Electrically erodible polymer gel for controlled release ofdrugs. Nature 1991, 354, 291–293.153. Ge, J.; Neofytou, E.; Cahill, T.J., III; Beygui, R.E.; Zare, R.N. Drug release fromelectric-field-responsive nanoparticles. ACS Nano 2012, 6, 227–233.154. Ruiz-Hernández, E.; López-Noriega, A.; Arcos, D.; Izquierdo-Barba, I.; Terasaki, O.; Vallet-Regí, M.Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chem.Mater. 2007, 19, 3455–3463.155. Van de Linde, S.; Sauer, M. How to switch a fluorophore: From undesired blinking to controlledphotoswitching. Chem. Soc. Rev. 2014, 43, 1076–1087.156. Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications.Acc. Chem. Res. 2014, 47, 3052–3060.157. Lee, E.S.; Gao, Z.; Bae, Y.H. Recent progress in tumor pH targeting nanotechnology.J. Controll. Release 2008, 132, 164–170.158. Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol.Cell Biol. 2010, 11, 50–61.159. Lee, C.-H.; Cheng, S.-H.; Huang, I.P.; Souris, J.S.; Yang, C.-S.; Mou, C.-Y.; Lo, L.-W.Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release ofanticancer chemotherapeutics. Angew. Chem. Int. Ed. 2010, 49, 8214–8219.160. Lee, J.E.; Lee, D.J.; Lee, N.; Kim, B.H.; Choi, S.H.; Hyeon, T. Multifunctional mesoporous silicananocomposite nanoparticles for pH controlled drug release and dual modal imaging. J. Mater.Chem. 2011, 21, 16869–16872.161. Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsivenano-vehicles as a promising platform for targeted intracellular drug and gene delivery.J. Controll. Release 2011, 152, 2–12.162. Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A.J.; Zweier, J.L.; Yamada, K.; Krishna, M.C.;Mitchell, J.B. Noninvasive imaging of tumor redox status and its modification by tissueglutathione levels. Cancer Res. 2002, 62, 307–312.163. Yuan, L.; Chen, W.; Hu, J.; Zhang, J.Z.; Yang, D. Mechanistic study of the covalent loading ofPaclitaxel via disulfide linkers for controlled drug release. Langmuir 2013, 29, 734–743.Nanomaterials 2015, 5 1935164. Mortera, R.; Vivero-Escoto, J.; Slowing, I.I.; Garrone, E.; Onida, B.; Lin, V.S.Y. Cell-inducedintracellular controlled release of membrane impermeable cysteine from a mesoporous silicananoparticle-based drug delivery system. Chem. Commun. 2009, 14, 3219–3221.165. Bareford, L.A.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv.Rev. 2007, 59, 748–758.166. Chan, P.; Lovric, J.; Warwicker, J. Subcellular pH and predicted pH-dependent features ofproteins. Proteomics 2006, 6, 3494–3501.167. Geisow, M.J. Fluorescein conjugates as indicators of subcellular pH-A critical evaluacion.Exp. Cell Res. 1984, 150, 29–35.168. De la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release anddiagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978.169. Fukami, T.; Yokoi, T. The Emerging role of human esterases. Drug Metabol. Pharm. 2012, 27,466–477.170. Runquist, E.A.; Havel, R.J. Acid-hydrolases in early and late endosome fractions from rat-liver.J. Biol. Chem. 1991, 266, 22557–22563.171. Swarnakar, S.; Paul, S.; Singh, L.P.; Reiter, R.J. Matrix metalloproteinases in health and disease:Regulation by melatonin. J. Pineal Res. 2011, 50, 8–20.172. De Melo, M.P.; de Lima, T.M.; Pithon-Curi, T.C.; Curi, R. The mechanism of indole acetic acidcytotoxicity. Toxicol. Lett. 2004, 148, 103–111.173. Sun, L.; Zhang, X.; Zheng, C.; Wu, Z.; Li, C. A pH gated, clucose-sensitive nanoparticle basedon worm-like mesoporous silica for controlled insulin release. J. Phys. Chem. B 2013, 117,3852–3860.174. Zhao, Z.; Meng, H.; Wang, N.; Donovan, M.J.; Fu, T.; You, M.; Chen, Z.; Zhang, X.; Tan, W.A Controlled-release nanocarrier with extracellular pH value driven tumor targeting andtranslocation for drug delivery. Angew. Chem. Int. Ed. 2013, 52, 7487–7491.175. Chen, C.; Geng, J.; Pu, F.; Yang, X.; Ren, J.; Qu, X. Polyvalent nucleic acid/mesoporous silicananoparticle conjugates: Dual stimuli-responsive vehicles for intracellular drug delivery.Angew. Chem. Int. Ed. 2011, 50, 882–886.176. Zhang, X.; Yang, P.; Dai, Y.; Ma, P.A.; Li, X.; Cheng, Z.; Hou, Z.; Kang, X.; Li, C.; Lin, J.Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores forcell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013,23, 4067–4078.177. Fang, W.; Yang, J.; Gong, J.; Zheng, N. Photo- and pH-Triggered Release of Anticancer Drugsfrom Mesoporous Silica-Coated Pd@Ag Nanoparticles. Adv. Funct. Mater. 2012, 22, 842–848.178. Angelos, S.; Yang, Y.-W.; Khashab, N.M.; Stoddart, J.F.; Zink, J.I. Dual-controllednanoparticles exhibiting AND logic. J. Am. Chem. Soc. 2009, 131, 11344–11346.179. Yao, X.; Chen, X.; He, C.; Chen, L.; Chen, X. Dual pH-responsive mesoporous silicananoparticles for efficient combination of chemotherapy and photodynamic therapy. J. Mater.Chem. B 2015, 3, 4707–4714.180. Fu, C.; Liu, T.; Li, L.; Liu, H.; Chen, D.; Tang, F. The absorption, distribution, excretion andtoxicity of mesoporous silica nanoparticles in mice following different exposure routes.Biomaterials 2013, 34, 2565–2575.Nanomaterials 2015, 5 1936181. Lee, S.-F.; Zhu, X.-M.; Wang, Y.-X.J.; Xuan, S.-H.; You, Q.; Chan, W.-H.; Wong, C.-H.; Wang, F.;Yu, J.C.; Cheng, C.H.K.; et al. Ultrasound, pH, and magnetically responsive crown-ether-coatedcore/shell nanoparticles as drug encapsulation and release systems. ACS Appl. Mater. Interfaces2013, 5, 1566–1574.182. Chen, Y.; Chen, H.; Shi, J. In vivo bio-Safety evaluations and diagnostic/therapeutic applicationsof chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.183. Lin, Y.-S.; Hurley, K.R.; Haynes, C.L. Critical considerations in the biomedical use ofmesoporous silica nanoparticles. J. Phys. Chem. Lett. 2012, 3, 364–374.184. Rosenholm, J.M.; Mamaeva, V.; Sahlgren, C.; Linden, M. Nanoparticles in targeted cancertherapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine2012, 7, 111–120.185. Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.;Longo, V.; Herz, E.; Iyer, S.; et al. Multimodal silica nanoparticles are effective cancer-targetedprobes in a model of human melanoma. J. Clin. Investig. 2011, 121, 2768–2780.186. Jaganathan, H.; Godin, B. Biocompatibility assessment of Si-based nano- and micro-particles.Adv. Drug Deliv. Rev. 2012, 64, 1800–1819.187. Slowing, I.I.; Wu, C.-W.; Vivero-Escoto, J.L.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles forReducing Hemolytic Activity towards Mammalian Red Blood Cells. Small 2009, 5, 57–62.188. He, Q.J.; Shi, J.L.; Chen, F.; Zhu, M.; Zhang, L.X. An anticancer drug delivery system based onsurfactant-templated mesoporous silica nanoparticles. Biomaterials 2010, 31, 3335–3346.189. He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In vivo biodistribution and urinary excretion ofmesoporous silica nanoparticles: Effects of particle size and PEGylation. Small 2011, 7,271–280.190. Asefa, T.; Zhimin, T.; Biocompatibility of Mesoporous Silica Nanoparticles. Chem. Res. Toxicol.2012, 25, 2265–2284.191. Yu, T.; Greish, K.; McGill, L.D.; Ray, A.; Ghandehari, H. Influence of geometry, porosity, andsurface characteristics of silica nanoparticles on acute toxicity: Their vasculature effect andtolerance threshold. ACS Nano 2012, 6, 2289–2301.192. Hudson, S.P.; Padera, R.F.; Langer, R.; Kohane, D.S. The biocompatibility of mesoporoussilicates. Biomaterials 2008, 29, 4045–4055.193. Liu, T.L.; Li, L.L.; Teng, X.; Huang, X.L.; Liu, H.Y.; Chen, D.; Ren, J.; He, J.Q.; Tang, F.Q.Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenouslyexposed mice. Biomaterials 2011, 32, 1657–1668.194. Fadeel, B.; García-Bennett, A.E. Better safe than sorry: Understanding the toxicologicalproperties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv.Rev. 2010, 62, 362–374.195. He, Q.J.; Zhang, J.M.; Shi, J.L.; Zhu, Z.Y.; Zhang, L.X.; Bu, W.B.; Guo, L.M.; Chen , Y. Theeffect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteinsand cellular responses. Biomaterials 2010, 31, 1085–1092.196. Wu, S.-H.; Lin, Y.-S.; Hung, Y.; Chou, Y.-H.; Hsu, Y.-H.; Chang, C.; Mou, C.-Y.Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magneticresonance imaging studies. Chembiochem 2008, 9, 53–57.Nanomaterials 2015, 5 1937197. Lee, C.-H.; Cheng, S.-H.; Wang, Y.; Chen, Y.-C.; Chen, N.-T.; Souris, J.; Chen, C.-T.; Mou, C.-Y.;Yang, C.-S.; Lo, L.-W. Near-infrared mesoporous silica sanoparticles for optical imaging:Characterization and in vivo biodistribution. Adv. Funct. Mater. 2009, 19, 215–222.198. Martin, K.R. The chemistry of silica and its potential health benefits. J. Nutr. Health Aging 2007,11, 94–98.199. Mamaeva, V.; Rosenholm, J.M.; Bate-Eya, L.T.; Bergman, L.; Peuhu, E.; Duchanoy, A.;Fortelius, L.E.; Landor, S.; Toivola, D.M.; Linden, M.; et al. Mesoporous silica nanoparticles asdrug delivery systems for targeted inhibition of notch signaling in cancer. Mol. Ther. 2011, 19,1538–1546.200. Szakacs, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targetingmultidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.201. Nichols, J.W.; Bae, Y.H. Odyssey of a cancer nanoparticle: From injection site to site of action.Nano Today 2012, 7, 606–618.202. Mikhail, A.S.; Allen, C. Block copolymer micelles for delivery of cancer therapy: Transport atthe whole body, tissue and cellular levels. J. Controll. Release 2009, 138, 214–223.203. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev.2013, 42, 3862–3875. NO RESEARCHER ID M-3378-2014 (María Vallet Regí)ORCID 0000-0002-6104-4889 (María Vallet Regí) NO Ministerio de Economia y Competitividad (MINECO) NO Agening Network of Excellence DS Docta Complutense RD 6 may 2024