RT Journal Article T1 Strictly singular operators in pairs of L (p) space A1 Semenov, E.M. A1 Tradacete, P. A1 Hernández, Francisco L. AB Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2. PB Springer SN 1064-5624 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24675 UL https://hdl.handle.net/20.500.14352/24675 LA eng NO Ministerio de Economía y Competitividad (MINECO) NO Russian Foundation for Basic Research NO Universidad Complutense de Madrid DS Docta Complutense RD 8 abr 2025