RT Journal Article T1 Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models A1 Vera Montecinos, América A1 Rodríguez Mias, Ricard A1 MacDowell, Karina S. A1 García Bueno, Borja A1 González Bris, Álvaro A1 Caso, Javier R. A1 Villén, Judit A1 Ramos, Belén AB Despite the growing importance of the cerebellum as a region highly vulnerable to accumulating molecular errors in schizophrenia, limited information is available regarding altered molecular networks with potential therapeutic targets. To identify altered networks, we conducted one-shot liquid chromatography–tandem mass spectrometry in postmortem cerebellar cortex in schizophrenia and healthy individuals followed by bioinformatic analysis (PXD024937 identifier in ProteomeXchange repository). A total of 108 up-regulated proteins were enriched in stress-related proteins, half of which were also enriched in axonal cytoskeletal organization and vesicle-mediated transport. A total of 142 down-regulated proteins showed an enrichment in proteins involved in mitochondrial disease, most of which were also enriched in energy-related biological functions. Network analysis identified a mixed module of mainly axonal-related pathways for up-regulated proteins with a high number of interactions for stress-related proteins. Energy metabolism and neutrophil degranulation modules were found for down-regulated proteins. Further, two double-hit postnatal stress murine models based on maternal deprivation combined with social isolation or chronic restraint stress were used to investigate the most robust candidates of generated networks. CLASP1 from the axonal module in the model of maternal deprivation was combined with social isolation, while YWHAZ was not altered in either model. METTL7A from the degranulation pathway was reduced in both models and was identified as altered also in previous gene expression studies, while NDUFB9 from the energy network was reduced only in the model of maternal deprivation combined with social isolation. This work provides altered stress- and mitochondrial disease-related proteins involved in energy, immune and axonal networks in the cerebellum in schizophrenia as possible novel targets for therapeutic interventions and suggests that METTL7A is a possible relevant altered stress-related protein in this context. PB MPDI SN 1422-0067 YR 2021 FD 2021-09-17 LK https://hdl.handle.net/20.500.14352/4839 UL https://hdl.handle.net/20.500.14352/4839 LA eng NO Ministerio de Economía y Competitividad (MINECO) NO Instituto de Salud Carlos III (ISCIII) NO Instituto de Salud Carlos III (ISCIII)/FEDER NO CONICYT (Chile) NO NIH DS Docta Complutense RD 4 may 2024