%0 Journal Article %A Bisigello, L. %A Caputi, K. I. %A Colina, L. %A Le Fèvre, O. %A Nørgaard-Nielsen, H. U. %A Pérez González, Pablo Guillermo %A Pye, J. %A Van der Werf, P. %A Ilbert, O. %A Grogin, N. %A Koekemoer, A. %T The impact of JWST broad-band filter choice on photometric redshift estimation %D 2016 %@ 0067-0049 %U https://hdl.handle.net/20.500.14352/19128 %X he determination of galaxy redshifts in the James Webb Space Telescope’s (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST’s Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ > 5.0 μm . In this work we analyze the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at λ < 0.6 μm , on the derived photometric redshifts (zphot) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0–10. We found that observations at λ < 0.6 μm are necessary to control the contamination of high-z samples by low-z interlopers. Adding MIRI (F560W and F770W) photometry to the NIRCam data mitigates the absence of ancillary observations at λ < 0.6 μm and improves the redshift estimation. At z = 7–10, accurate z_(phot) can be obtained with the NIRCam broadbands alone when S/N ≥10, but the z_(phot) quality significantly degrades at S/N ≤ 5. Adding MIRI photometry with 1 mag brighter depth than the NIRCam depth allows for a redshift recovery of 83%–99%, depending on spectral energy distribution type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W] = 29 AB mag at z = 7–10 will be detected with MIRI at [F560W, F770W] < 28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes. %~