RT Book, Section T1 Electrical Properties of Intermediate Band (IB) Silicon Solar Cells Obtained by Titanium Ion Implantation A1 Castán, Helena A1 Pérez, Eduardo A1 Dueñas, Salvador A1 Bailón, Luis A1 Olea Ariza, Javier A1 Pastor Pastor, David A1 García Hemme, Eric A1 Irigoyen Irigoyen, Maite A1 González Díaz, Germán A2 Pelaz, Lourdes A2 Santos, Iván A2 Duffy, Ray A2 Torregrosa, Frank A2 Bourdelle, Konstantin AB Intermediate band silicon solar cells have been fabricated by Titanium ion implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the unimplanted substrate is obtained. In this work we present electrical characterization results which evidence the formation of the intermediate band on silicon when ion implantation dose is beyond the Mott limit. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the non-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increase is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Titanium deep levels have been measured by Admittance Spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28 eV bellow the conduction band for implantation doses in the range 10^13-10^14 at/cm^2. For doses over the Mott limit the implanted atoms become non recombinant. Admittance measurements are the first experimental demonstration the Intermediate Band is formation. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n^+/n junction. PB American Institute of Physics (AIP) SN 978-0-7354-1109-8 YR 2012 FD 2012 LK https://hdl.handle.net/20.500.14352/45611 UL https://hdl.handle.net/20.500.14352/45611 LA eng NO 1. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014(1997).2. J.-W. Chen, A. G. Milnes, and A. Rohatgi, Solid-State Electron. 22, 801 (1979).3. D.Mathiot and S.Hocine, J. Appl. Phys. 66, 5862 (1989).4. S. Hocine and D. Mathiot, Appl. Phys. Lett. 53, 1269 (1988).5. A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006).6. J. Olea, M. Toledano-Luque, D. Pastor, G. González- Díaz and I. Mártil, J. Appl. Phys. 104, 016105, (2008)7. J. Barbolla, S. Dueñas and L. Bailón, Solid-State Electron. 35(3), 285–297 (1992).8. J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín and A. Luque. J.Appl. Phys. 109, 063718 (2011).9. S. Dueñas, H. Castán, L. Enríquez, J. Barbolla, J. Montserrat and E. Lora-Tamayo. Semicond. Sci. Technol. 9, 1637-1648 (1994). NO © 2012 American Institute of Physics.International Conference on Ion Implantation Technology (19ª. 2012. Valladolid).This work was partially supported by VA128A11-2 funded by the Junta de Castilla y León, Spanish TEC2011 under grant 27292-C02-01, S/2009/ENE- 1477) funded by the Comunidad de Madrid and CSD2006-00004 funded by the Spanish Consolider National Program. Research of E. Perez was supported by a University of Valladolid FPI grant and research of E. Garcia-Hemme by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). NO Comunidad de Madrid NO Junta de Castilla y León NO Consolider-Ingenio NO Ministerio de Economía y Competitividad (MINECO), España NO Universidad de Valladolid NO Campus de Excelencia Internacional (CEI) Moncloa DS Docta Complutense RD 4 may 2024