%0 Journal Article %A Mejías, Raquel %A Costo, Rocío %A Roca, Alejandro G. %A Fernández Arias, Cristina %A Veintemillas-Verdaguer, S. %A González-Carreño, T. %A Puerto Morales, M. del %A Serna, C.J. %A Mañes, S. %A Barber, D.F. %T Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery %D 2008 %@ 0168-3659 %U https://hdl.handle.net/20.500.14352/96469 %X Attachment of cytokines to magnetic nanoparticles has been developed as a system for controlled local drug release in cancer therapy. We studied the adsorption/release of murine interferon gamma (IFN-gamma) on negatively charged magnetic nanoparticles prepared by three different methods, including coprecipitation, decomposition in organic media, and laser pyrolysis. To facilitate IFN-gamma adsorption, magnetic nanoparticles were surface modified by distinct molecules to achieve high negative charge at pH 7, maintaining small aggregate size and stability in biological media. We analyzed carboxylate-based coatings and studied the colloidal properties of the resulting dispersions. Finally, we incubated the magnetic dispersions with IFN-gamma and determined optimal conditions for protein adsorption onto the particles, as well as the release capacity at different pH and as a function of time. Particles prepared by decomposition in organic media and further modified with dimercaptosuccinic acid showed the most efficient adsorption/release capacity. IFN-gamma adsorbed on these nanoparticles would allow concentration of this protein or other biomolecules at specific sites for treatment of cancer or other diseases. %~