RT Journal Article T1 Many-body Coulomb gauge exotic and charmed hybrids A1 Llanes Estrada, Felipe José A1 Cotanch, Stephen R AB Utilizing an effective QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson (q¯q ) and glueball (gg) masses. Hybrids entail a computationally intense relativistic three quasiparticle (q ¯ qg) calculation with the 9-dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA (RPA) spectrum for the nonexotic 1−− charmed (c ¯ c and c ¯cg) system provides an explanation for the overpopulation of the observed J/ψ states. For the important 1−+ light exotic channel we obtain hybrid masses above 2 GeV, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 GeV are of different, perhaps four quark, structure. PB Elsevier Science Bv SN 0370-2693 YR 2001 FD 2001-04-05 LK https://hdl.handle.net/20.500.14352/58834 UL https://hdl.handle.net/20.500.14352/58834 LA eng NO © 2001 Published by Elsevier Science B.V. We thank NERSC for providing Cray J-90 CPU time. F.L.E. acknowledges SURA-Jefferson Lab for a graduate fellowship. This work was partially supported by grantsDOE DE-FG02 97ER41048 and NSF INT-9807009 NO DOE NO NSF DS Docta Complutense RD 8 abr 2025