RT Journal Article T1 Impact of electron-electron interactions on the thermoelectric efficiency of graphene quantum point contacts A1 Sánchez Ramírez, Irián A1 Baba, Yuriko Caterina A1 Chico Gómez, Leonor María A1 Domínguez-Adame Acosta, Francisco AB Thermoelectric materials enable us to harness dissipated energy and make electronic devices less energydemanding. Heat-to-electricity conversion requires materials with a strongly suppressed thermal conductivity but still high electronic conduction. This goal is largely achieved with the help of nanostructured materials, even if the bulk counterpart is not highly efficient. In this work, we investigate how thermoelectric efficiency is enhanced by many-body effects in graphene nanoribbons at low temperature. To this end, starting from the Kane-Mele-Hubbard model within a mean-field approximation, we carry out an extensive numerical study of the impact of electron-electron interactions on the thermoelectric efficiency of graphene nanoribbons with armchair or zigzag edges. We consider two different regimes, namely trivial and topological insulators. We find that electron-electron interactions are crucial for the appearance of interference phenomena that give rise to an enhancement of the thermoelectric efficiency of the nanoribbons. Lastly, we also propose an experimental setup that would help to test the validity of our conclusions. PB American Physical Society SN 2469-9950 YR 2022 FD 2022-07-21 LK https://hdl.handle.net/20.500.14352/71971 UL https://hdl.handle.net/20.500.14352/71971 LA eng NO ©2022 American Physical SocietyThis work was supported by the Spanish Ministery ofScience and Innovation (Grants No. PID2019-106820RB-C21 and No. PGC2018-097018-B-I00). The authors are grateful to Enrique Diez and Mario Amado for helpful discussions. NO Ministerio de Ciencia e Innovación (MICINN) /FEDER NO Ministerio de Ciencia e Innovación (MICINN) DS Docta Complutense RD 10 abr 2025