RT Journal Article T1 Characterizing Sobolev spaces of vector-valued functions A1 Caamaño Aldemunde, Iván A1 Jaramillo Aguado, Jesús Ángel A1 Prieto Yerro, M. Ángeles AB We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R1,p(Ω, V), where 1 ≤p≤∞, in terms of the existence of partial metric derivatives or partial w∗-derivatives with suitable integrability properties. In the case p=∞ the Sobolev-Reshetnyak space R1,∞(Ω, V)is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V=l∞. PB Elsevier SN 0022-247X YR 2022 FD 2022 LK https://hdl.handle.net/20.500.14352/71429 UL https://hdl.handle.net/20.500.14352/71429 LA eng NO CRUE-CSIC (Acuerdos Transformativos 2022) NO Ministerio de Ciencia e Innovación (MICINN) DS Docta Complutense RD 19 abr 2025