RT Journal Article T1 Laser cooling of trapped ions: the influence of micromotion A1 Cirac, J. I. A1 Garay Elizondo, Luis Javier A1 Blatt, L. A1 Parkins, A. S. A1 Zoller, P. AB Laser cooling of a single trapped ion in a Paul trap is discussed theoretically in the Lamb-Dicke limit, with full consideration of the time dependence of the trapping potential. Resulting mean kinetic energies are defined as time averages over one period of the micromotion and are compared with final temperatures expected from the laser cooling treatment with harmonic traps. For laser-atom detunings close to the micromotion frequency the results differ significantly from those expected for a harmonic trap potential. A physical interpretation is given and simple formulas are derived for the strong confinement case. PB American Physical Society SN 1050-2947 YR 1994 FD 1994-01 LK https://hdl.handle.net/20.500.14352/59557 UL https://hdl.handle.net/20.500.14352/59557 LA eng NO [1] D. J. Wineland, W. M. Itano, and R. S. VanDyck, Jr., Adv. At. Mol. Phys. 19, 135 (1983). [2] See, e.g., J. Mod. Opt. 39, 192 (1992).[3] P. E. Toschek, in 1Veu Trends in Atomic Physics Vol. I, Proceedings of the Les Houches Summer School, Session XVIII, edited by G. Grynberg and R. Stora (NorthHolland, Amsterdam, 1984), p. 381. [4) R. Blatt, in Fundamental Systems in quantum Optics, Proceedings of the Les Houches Summer School, Session LIII, edited by 3. Dalibard, 3. M. Raymond, and J. ZinnJustin (North-Holland, Amsterdam, 1993) p. 253. [5] D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521 (1979); W. M. Itano and D. J. Wineland, ibid. 25, 35 (1982). [6] S. Stenholm, Rev. Mod. Phys. 58, 699 (1986). [7] M. Lindberg and S. Stenholm, J. Phys. (1985). [8] M. Lindberg and J. Javanainen, J. Opt. Soc Am. B 3, 1008 (1986). [9] Th. Sauter, R. Blatt, W. Neuhauser, and P. E. Toschek, Phys Scr .T22, 216 (1988).[10] J.I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, Phys. Rev. A 48, 2668 (1992). [11]R. Blatt, P. Zoller, G. Holzmuller, and I. Siemers, Z. Phys. D 4, 121 (1986).[12] E. Fischer, Z. Phys. 156, 1 (1959). [13] The form of the coefBcients c2„ for the Mathieu equation in some limiting cases, as well as some properties of this equation, can be found, for example, in M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964). Note that in order to fix these coeKcients we have chosen c_o=1. [14]R. 3. Glanber, in Foundations of Quantum Mechanics, edited by T. D. Black, M. M. Nieto, H. S. Pilloff, M. O. Scnlly, and R. M. Sinclair (World Scientific, Singapore, 1992), p. 23. [15] D. J. Wineland, W. M. Itano, J. C. Bergquist, and R. G. Hulet, Phys. Rev. A 36, 2220 (1987).[16] R. J. Cook, D. G. Shankland, and A. L. Wells, Phys. Rev. A 31, 564 (1985). NO © 1994 The American Physical Society.J.I.C. and R.B. acknowledge travel support from NATO. R B. is supported in part by the Deutsche Forschungsgemeinschaft. L.3.G. is supported in part by DGCYT under Contract No. PB-0052 and by a Basque Country Grant. He also thanks the Instituto de Optica, CSIC, for its hospitality. The work at JILA is supported in part by the National Science Foundation. The ESA IUE Observatory is affiliated with the Astrophysics Division, Space Science Department, ESTEC. NO DGCYT NO Basque Country NO NATO NO Deutsche Forschungsgemeinschaft NO National Science Foundation DS Docta Complutense RD 28 abr 2024