RT Journal Article T1 Good quality Al/SiNx : H/InP metal-insulator-semiconductor devices obtained with electron cyclotron resonance plasma method A1 Mártil de la Plaza, Ignacio A1 González Díaz, Germán A1 García, S. A1 Castán, E. A1 Dueñas, S. A1 Fernández, M. AB We have obtained Al/SiNx:H/InP metal-insulator-semiconductor devices depositing SiNx:H thin films by the electron cyclotron resonance plasma method at 200 degrees C. The electrical properties of the structures were analyzed according to capacitance-voltage and deep level transient spectroscopy measurements. We deduce an inverse correlation between the insulator composition-the N/Si ratio-and the density of interface traps: those films with the maximum N/Si ratio (1.49) produce devices with the minimum trap density-2 x 10(12) cm(-2) eV(-1) at 0.42 eV. above the midgap. We explain the influence of film composition on the interface trap density in terms of a substitution of phosphorous vacancies at the InP surface, V-p, by N atoms coming from the insulator, N-Vp. The values obtained in our research for the interface trap distribution were similar to other published results for devices that use chemical and/or physical passivation processes of the InP surface prior to the deposition of the insulator. PB American Institute of Physics SN 0021-8979 YR 1998 FD 1998-01-01 LK https://hdl.handle.net/20.500.14352/59300 UL https://hdl.handle.net/20.500.14352/59300 LA eng NO 1) D.G. Park, M. Tao, D. Li, A.E. Botchkarev, Z. Fan, Z. Wang, S.N. Mohammed, A. Rockett, J.R. Abelson and J. Morkoc, J. Vac. Sci. Technol. B, 14, 2674 (1996).2) S. García, J.M. Martín, I. Mártil, M. Fernández and G. González Díaz, Philos. Mag. B, 73, 487 (1996).3) K. Semo, S. Hayashi, S. Wickramanayaka and Y. Hatanake, Thin Solid Films, 281-292, 397 (1996).4) R.I. Hegde, P.J. Tobin, K.G. Reid, B. Maiti and S.A. Ajuria, Appl. Phys. Lett., 66, 2882 (1995).5) P.J.M. Permiter and J.G. Swanson, J. Electron. Mater., 25, 1506 (1993).6) A. Kapila, X. Si and V. Malhotra, Appl. Phys. Lett., 62, 2259 (1993).7) K. Vaccaro, H.M. Dauplaise, A. Davis, S.M. Spaziani and J.P. Lorenzo, Appl. Phys. Lett., 67, 527 (1995).8) C.S. Sundararamen, P. Milhelich, R.A. Masut and F. Currie, Appl. Phys. Lett., 64, 2279 (1994).9) A. Kapila, V. Malhotra, L.H. Camnitz, K.L. Seaward and D. Mars, J. Vac. Sci. Technol. B, 13, 10 (1995).10) E.H. Nicollian and J.R. Brews, MOS Physics and Technology (Wiley. New York, 1982).11) T. Hashizume, H.Hasegawa, R. Riemenschneider and H.L. Hartnagel, Jpn. J. Appl. Phys., Part. 1, 33, 727 (1994).12) D. Landheer, Z.H. Lu, J.M. Baribeau, L.J. Huang and W.M. Lau, J. Electron. Mater., 23, 943 (1994).13) L. He, H. Hasegawa, T. Sawada and H. Ohno, J. Appl. Phys., 63, 2120 (1998).14) H. Hasegawa, M. Akazawa, H. Ishii, A. Uraie, K. Iwadate and H. Ohno, J. Vac. Sci. Technol. B, 8, 867 (1990). NO © American Institute of Physics. This research was partially supported by the Spanish Government (CICYT), under Grant no. TIC 93/0175. NO Spanish Government (CICYT) DS Docta Complutense RD 6 may 2024