RT Journal Article T1 Preparation and Characterization of Highly Elastic Foams with Enhanced Electromagnetic Wave Absorption Based On Ethylene-Propylene-Diene-Monomer Rubber Filled with Barium Titanate/Multiwall Carbon Nanotube Hybrid A1 Bizhani, Hasti A1 Katbab, Ali Asghar A1 López Hernández, Emil A1 Miranda Pantoja, José Miguel A1 López Manchado, Miguel A. A1 Verdejo, Raquel AB Hybrid ethylene-propylene-diene-monomer (EPDM) nanocomposite foams were produced via compression molding with enhanced electromagnetic wave absorption efficiency. The hybrid filler, consisting of 20 phr ferroelectric barium titanate (BT) and various loading fractions of multi-wall carbon nanotubes (MWCNTs), synergistically increased the electromagnetic (EM) wave absorption characteristics of the EPDM foam. Accordingly, while the EPDM foam filled with 20 phr BT was transparent to the EM wave within the frequency range of 8.2-12.4 GHz (X-band), the hybrid EPDM nanocomposite foam loaded with 20 phr BT and 10 phr MWCNTs presented a total shielding effectiveness (SE) of similar to 22.3 dB compared to similar to similar to 16.0 dB of the MWCNTs (10 phr). This synergistic effect is suggested to be due to the segregation of MWCNT networks within the cellular structure of EPDM, resulting in enhanced electrical conductivity, and also high dielectric permittivity of the foam imparted by the BT particles. Moreover, the total SE of the BT/MWCNTs loaded foam samples remained almost unchanged when subjected to repeated bending due to the elastic recovery behavior of the crosslinked EPDM foamed nanocomposites. PB MDPI SN 2073-4360 YR 2020 FD 2020-10 LK https://hdl.handle.net/20.500.14352/7626 UL https://hdl.handle.net/20.500.14352/7626 LA eng NO Financial support from MICIU is acknowledged through the project MAT2016-81138-R. NO Ministerio de Ciencia e Innovación (MICINN) DS Docta Complutense RD 8 abr 2025