RT Journal Article T1 Testing QCD with hypothetical tau leptons A1 Brodsky, S. J A1 Peláez Sagredo, José Ramón A1 Toumbas, N. AB We construct new phenomenological tests of perturbative QCD by considering a hypothetical au lepton of arbitrary mass which decays hadronically through the electromagnetic current. Its adronic branching ratio can be computed directly as an integral over the e⁺e⁻ annihilation cross section ratio, R_ (e⁺e⁻). More generally, we can design a set of commensurate scale relations which test the applicability and self-consistency of leading twist QCD predictions by varying the weight function away from the form associated with the V-A decay of the physical τ . This method allows the wide range of R_(e⁺e⁻) data (or other similar observables which define an effective charge) to be used as renormalization scheme and scale invariant probes of QCD. [S0556-2821(99)05713-6]. PB Amer Physical Soc SN 1550-7998 YR 1999 FD 1999-08-01 LK https://hdl.handle.net/20.500.14352/59879 UL https://hdl.handle.net/20.500.14352/59879 LA eng NO [1] E. Braaten, Phys. Rev. Lett. 60, 1606 (1988); Phys. Rev. D 39, 1458 (1989); E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992). [2] S. Groote et al., Phys. Rev. Lett. 79, 2763 (1997). [3] F. Le Diberder and A. Pich, Phys. Lett. B 289, 165 (1992); S. Narison and A. Pich, ibid. 304, 359 (1993); S. Narison, ibid. 358, 113 (1995); 361, 121 (1995); M. Girone and M. Neubert, Phys. Rev. Lett. 76, 3061 (1996); S. Groote, J. G. Korner, and A. A. Pivovarov, Phys. Lett. B 407, 66 (1997); M. Davier, Phys. Rev. D 58, 096014 (1998); R. Barate et al., Eur. Phys. J. C 4, 409 (1998); OPAL Collaboration, K. Ackerstaff et al., ibid. 7, 571 (1999). [4] B. Chibishov et al., Int. J. Mod. Phys. A 12, 2075 (1997); V. A. Novikov et al., Nucl. Phys. B237, 525 (1984). [5] S. J. Brodsky et al., Phys. Lett. B 372, 133 (1996). [6] S. J. Brodsky and H. J. Lu, Phys. Rev. D 51, 3652 [1995]. [7] G. Grunberg, Phys. Rev. D 29, 2315 (1984).[8] S. G. Girishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B 259, 144 (1991). [9] E. C. Poggio, H. R. Quinn, and S. Weinberg, Phys. Rev. D 13, 1958 (1976). [10] T. W. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975); Phys. Rev. D 12, 1404 (1975). [11] J. Schwinger, Particles, Sources and Fields, Vol. II (AddisonWesley, New York, 1973). [12] S. Brodsky et al., Phys. Rev. D 58, 116006 (1998); A. H. Hoang, Z. Ligeti, and A. V. Manohar, ibid. 59, 074017 (1999). [13] A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994). [14] A. Quenzer, Phys. Lett. 76B, 512 (1978); J. Burmeister et al., ibid. 76B, 361 (1978); Ch. Berger et al., ibid. 81B, 410 (1979); C. Bacci et al., ibid. 86B, 234 (1979); J. L. Siegrist et al., Phys. Rev. D 26, 969 (1982); B. Niczyporuk et al., Z. Phys. C 15, 299 (1982); L. M. Barkov et al., Nucl. Phys. B256, 365 (1985); Z. Jakubobski et al., Z. Phys. C 40, 49 (1988); D. Bisello et al., Phys. Lett. B 220, 325 (1989); W. Bartel et al., Phys. Lett. 129B, 145 (1983); 160B, 337 (1985); B. Naroska et al., Phys. Rep. 148, 67 (1987); B. Adeva et al., Phys. Rev. D 34, 681 (1986); R. Brandelik et al., Phys. Lett. 113B, 499 (1982); M. Althoff et al., ibid. 138B, 441 (1984); H.-J. Behrend et al., Phys. Lett. B 183, 407 (1987). [15] M. L. Swartz, Phys. Rev. D 53, 5268 (1996). [16] V. A. Novikov et al., Phys. Rep. 41, 1 (1978); M. B. Voloshin, Int. J. Mod. Phys. A 10, 2865 (1995); S. J. Brodsky et al., Phys. Lett. B 359, 355 (1995). NO ©1999 The American Physical Society. DS Docta Complutense RD 3 may 2024